Imaging biomarkers of angiogenesis and the microvascular environment in cerebral tumours.

Conventional contrast-enhanced CT and MRI are now in routine clinical use for the diagnosis, treatment and monitoring of diseases in the brain. The presence of contrast enhancement is a proxy for the pathological changes that occur in the normally highly regulated brain vasculature and blood-brain barrier. With recognition of the limitations of these techniques, and a greater appreciation for the nuanced mechanisms of microvascular change in a variety of pathological processes, novel techniques are under investigation for their utility in further interrogating the microvasculature of the brain. This is particularly important in tumours, where the reliance on angiogenesis (new vessel formation) is crucial for tumour growth, and the resulting microvascular configuration and derangement has profound implications for diagnosis, treatment and monitoring. In addition, novel therapeutic approaches that seek to directly modify the microvasculature require more sensitive and specific biological markers of baseline tumour behaviour and response. The currently used imaging biomarkers of angiogenesis and brain tumour microvascular environment are reviewed.

[1]  Hans Rolf Jäger,et al.  Differential chemosensitivity of tumor components in a malignant oligodendroglioma: assessment with diffusion-weighted, perfusion-weighted, and serial volumetric MR imaging. , 2005, AJNR. American journal of neuroradiology.

[2]  J Debus,et al.  Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. , 2003, Radiology.

[3]  William Arbuthnot Sir Lane,et al.  Endostatin: An Endogenous Inhibitor of Angiogenesis and Tumor Growth , 1997, Cell.

[4]  R. Strecker,et al.  Vessel size imaging in humans , 2005, Magnetic resonance in medicine.

[5]  Hong Liu,et al.  Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. , 2007, International journal of radiation oncology, biology, physics.

[6]  J E Heiserman,et al.  Relative Cerebral Blood Volume Values to Differentiate High-Grade Glioma Recurrence from Posttreatment Radiation Effect: Direct Correlation between Image-Guided Tissue Histopathology and Localized Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging Measurements , 2009, American Journal of Neuroradiology.

[7]  M Takahashi,et al.  Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. , 2000, AJNR. American journal of neuroradiology.

[8]  H. Dvorak,et al.  Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. , 1983, Science.

[9]  P. Wen,et al.  A "vascular normalization index" as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. , 2009, Cancer research.

[10]  Daniel J Brat,et al.  Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. , 2005, Neuro-oncology.

[11]  R. Mirimanoff,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[12]  Ting-Yim Lee,et al.  An Adiabatic Approximation to the Tissue Homogeneity Model for Water Exchange in the Brain: II. Experimental Validation , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  A. Jackson,et al.  Dynamic contrast-enhanced MRI in clinical trials of antivascular therapies , 2012, Nature Reviews Clinical Oncology.

[14]  R K Jain,et al.  Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. , 1996, The American journal of pathology.

[15]  G. Parker,et al.  DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents , 2007, British Journal of Cancer.

[16]  B. D. Ward,et al.  Characterization of a first-pass gradient-echo spin-echo method to predict brain tumor grade and angiogenesis. , 2004, AJNR. American journal of neuroradiology.

[17]  M Takahashi,et al.  Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report. , 1999, Journal of computer assisted tomography.

[18]  B. Conrad,et al.  Blood‐CSF barrier integrity in multiple sclerosis , 1996, Acta neurologica Scandinavica.

[19]  Geoff J M Parker,et al.  Preliminary study of oxygen-enhanced longitudinal relaxation in MRI: a potential novel biomarker of oxygenation changes in solid tumors. , 2009, International journal of radiation oncology, biology, physics.

[20]  A. Gregory Sorensen,et al.  Angiogenesis in brain tumours , 2007, Nature Reviews Neuroscience.

[21]  P. Carmeliet,et al.  Molecular mechanisms and clinical applications of angiogenesis , 2011, Nature.

[22]  G Johnson,et al.  Comparing perfusion metrics obtained from a single compartment versus pharmacokinetic modeling methods using dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. , 2006, AJNR. American journal of neuroradiology.

[23]  J. Folkman Opinion: Angiogenesis: an organizing principle for drug discovery? , 2007, Nature Reviews Drug Discovery.

[24]  T. Fu,et al.  Rectal cancer: 3D dynamic contrast-enhanced MRI; correlation with microvascular density and clinicopathological features , 2011, La radiologia medica.

[25]  R. Meuli,et al.  Perfusion and diffusion MRI of glioblastoma progression in a four-year prospective temozolomide clinical trial. , 2006, International Journal of Radiation Oncology, Biology, Physics.

[26]  T. Tamiya,et al.  11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[27]  A. Jackson,et al.  Can dynamic susceptibility contrast magnetic resonance imaging perfusion data be analyzed using a model based on directional flow? , 2003, Journal of magnetic resonance imaging : JMRI.

[28]  T. Mikkelsen,et al.  Quantitative Estimation of Permeability Surface-Area Product in Astroglial Brain Tumors Using Perfusion CT and Correlation with Histopathologic Grade , 2008, American Journal of Neuroradiology.

[29]  A. Brandes,et al.  MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  F. Mihara,et al.  Upregulation of vascular growth factors in multiple sclerosis: Correlation with MRI findings , 2006, Journal of the Neurological Sciences.

[31]  J. Folkman Tumor angiogenesis: therapeutic implications. , 1971, The New England journal of medicine.

[32]  A. Jackson,et al.  Analysis of dynamic contrast enhanced MRI. , 2004, The British journal of radiology.

[33]  H. Dvorak,et al.  Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. , 1999, Current topics in microbiology and immunology.

[34]  Glyn Johnson,et al.  Dynamic contrast-enhanced perfusion MR imaging measurements of endothelial permeability: differentiation between atypical and typical meningiomas. , 2003, AJNR. American journal of neuroradiology.

[35]  Glyn Johnson,et al.  Comparison of region‐of‐interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas , 2007, Journal of magnetic resonance imaging : JMRI.

[36]  P. Wesseling,et al.  Computer-assisted analysis of the microvasculature in untreated glioblastomas , 2005, Journal of Neuro-Oncology.

[37]  F. Zanella,et al.  Importance of Diffusion-Weighted Imaging in the Diagnosis of Cystic Brain Tumors and Intracerebral Abscesses , 2005, Zentralblatt fur Neurochirurgie.

[38]  C. Eskey,et al.  Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. , 2004, AJNR. American journal of neuroradiology.

[39]  T. Mikkelsen,et al.  Role of Perfusion CT in Glioma Grading and Comparison with Conventional MR Imaging Features , 2007, American Journal of Neuroradiology.

[40]  Glyn Johnson,et al.  Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. , 2003, AJNR. American journal of neuroradiology.

[41]  P. Baraldi,et al.  Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging , 2007, Neuroradiology.

[42]  Karl Herholz,et al.  Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[43]  Robert C Brasch,et al.  Dynamic contrast‐enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti‐angiogenic therapy in a xenograft model of glioblastoma multiforme , 2002, Journal of magnetic resonance imaging : JMRI.

[44]  L. Salford,et al.  Lack of neural control and reactivity to vasoactive agents in malignant glioma arteries. , 1991, Journal of neurosurgery.

[45]  M. Berger,et al.  Differentiation of Glioblastoma Multiforme and Single Brain Metastasis by Peak Height and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging , 2007, American Journal of Neuroradiology.

[46]  A. Jackson,et al.  Simultaneous mapping of blood volume and endothelial permeability surface area product in gliomas using iterative analysis of first-pass dynamic contrast enhanced MRI data. , 2003, The British journal of radiology.

[47]  R. Wurm,et al.  Comparison of dynamic contrast-enhanced MRI with WHO tumor grading for gliomas , 2001, European Radiology.

[48]  M. Knopp,et al.  Estimating kinetic parameters from dynamic contrast‐enhanced t1‐weighted MRI of a diffusable tracer: Standardized quantities and symbols , 1999, Journal of magnetic resonance imaging : JMRI.

[49]  Tommaso Scarabino,et al.  Multiparametric 3T MR approach to the assessment of cerebral gliomas: tumor extent and malignancy , 2006, Neuroradiology.

[50]  D. Louis,et al.  Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. , 1998, Journal of the National Cancer Institute.

[51]  Bahattin Hakyemez,et al.  Meningiomas with conventional MRI findings resembling intraaxial tumors: can perfusion-weighted MRI be helpful in differentiation? , 2006, Neuroradiology.

[52]  Xavier Golay,et al.  Multiple acquisitions with global inversion cycling (MAGIC): A multislice technique for vascular‐space‐occupancy dependent fMRI , 2004, Magnetic resonance in medicine.

[53]  Yiting Cao,et al.  Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[54]  J. Flickinger,et al.  Prognostic factors in the diagnosis and treatment of primary central nervous system lymphoma , 1989, Cancer.

[55]  E. Alexander,et al.  Radiation necrosis vs high-grade recurrent glioma: differentiation by using dual-isotope SPECT with 201TI and 99mTc-HMPAO. , 1991, AJNR. American journal of neuroradiology.

[56]  K. Plate,et al.  VEGF in Brain Tumors , 2000, Journal of Neuro-Oncology.

[57]  V. Treyer,et al.  Spatial Heterogeneity of Low-Grade Gliomas at the Capillary Level: A PET Study on Tumor Blood Flow and Amino Acid Uptake , 2007, Journal of Nuclear Medicine.

[58]  T. Mikkelsen,et al.  FIRST‐PASS PERFUSION COMPUTED TOMOGRAPHY: INITIAL EXPERIENCE IN DIFFERENTIATING RECURRENT BRAIN TUMORS FROM RADIATION EFFECTS AND RADIATION NECROSIS , 2007, Neurosurgery.

[59]  J. Gomori,et al.  Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. , 1997, Journal of neurosurgery.

[60]  B. Hakyemez,et al.  Brain Abscess and Cystic Brain Tumor: Discrimination With Dynamic Susceptibility Contrast Perfusion-Weighted MRI , 2005, Journal of computer assisted tomography.

[61]  S. Liu,et al.  Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. , 1993, The American journal of physiology.

[62]  B. Drayer,et al.  Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? , 1998, AJNR. American journal of neuroradiology.

[63]  Helen X. Chen,et al.  Adverse effects of anticancer agents that target the VEGF pathway , 2009, Nature Reviews Clinical Oncology.

[64]  M. J. van den Bent,et al.  Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression , 2004, Neurology.

[65]  A. Bjørnerud,et al.  Histogram Analysis of MR Imaging–Derived Cerebral Blood Volume Maps: Combined Glioma Grading and Identification of Low-Grade Oligodendroglial Subtypes , 2008, American Journal of Neuroradiology.

[66]  S. Ametamey,et al.  Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[67]  Apport de la tomographie à émission de positons dans la prise en charge des gliomes de bas grade , 2004 .

[68]  Glyn Johnson,et al.  Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging--prediction of patient clinical response. , 2006, Radiology.

[69]  Young-Seung Kim,et al.  Evaluation of a 99mTc-Labeled Cyclic RGD Tetramer for Noninvasive Imaging Integrin αvβ3-Positive Breast Cancer , 2007 .

[70]  B. Tang,et al.  Differentiation of primary central nervous system lymphoma and high-grade glioma with dynamic susceptibility contrast-enhanced perfusion magnetic resonance imaging , 2009, Acta radiologica.

[71]  M. Schwaiger,et al.  Imaging of integrin alpha(v)beta(3) expression in patients with malignant glioma by [18F] Galacto-RGD positron emission tomography. , 2009, Neuro-oncology.

[72]  Tom Mikkelsen,et al.  Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging: Quality and analysis results of a phase I trial , 2004, Journal of magnetic resonance imaging : JMRI.

[73]  A. Jackson,et al.  Imaging of brain tumors: perfusion/permeability. , 2010, Neuroimaging clinics of North America.

[74]  A. Jackson,et al.  Metabolic and molecular imaging in neuro-oncology , 2007, The Lancet Neurology.

[75]  J R Griffiths,et al.  Clinical studies. , 2005, Advances in pharmacology.

[76]  Waggener Jd,et al.  Vasculature of Neural Neoplasms. , 1976 .

[77]  J. Petrella,et al.  Distinction between cerebral abscesses and high-grade neoplasms by dynamic susceptibility contrast perfusion MRI. , 2004, AJR. American journal of roentgenology.

[78]  J. Folkman,et al.  Tumor angiogenesis: a quantitative method for histologic grading. , 1972, Journal of the National Cancer Institute.

[79]  G Johnson,et al.  Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. , 2000, AJNR. American journal of neuroradiology.

[80]  B. Rosen,et al.  High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[81]  W. Cai,et al.  64Cu-Labeled Tetrameric and Octameric RGD Peptides for Small-Animal PET of Tumor αvβ3 Integrin Expression , 2007, Journal of Nuclear Medicine.

[82]  S. Leung,et al.  Diffusion-Weighted Magnetic Resonance Imaging in Radiation-Induced Cerebral Necrosis: Apparent Diffusion Coefficient in Lesion Components , 2003, Journal of computer assisted tomography.

[83]  Dieta Brandsma,et al.  Incidence of early pseudo‐progression in a cohort of malignant glioma patients treated with chemoirradiation with temozolomide , 2008, Cancer.

[84]  M Takahashi,et al.  Value of dynamic susceptibility contrast magnetic resonance imaging in the evaluation of intracranial tumors. , 1999, Topics in magnetic resonance imaging : TMRI.

[85]  Andrew E. Sloan,et al.  Early necrosis following concurrent Temodar and radiotherapy in patients with glioblastoma , 2007, Journal of Neuro-Oncology.

[86]  G Johnson,et al.  Predicting Grade of Cerebral Glioma Using Vascular-Space Occupancy MR Imaging , 2008, American Journal of Neuroradiology.

[87]  Jin-Suh Kim,et al.  Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. , 2002, AJR. American journal of roentgenology.

[88]  M. Schwaiger,et al.  [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates. , 2004, Bioconjugate chemistry.

[89]  A. Waldman,et al.  Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? , 2008, Radiology.

[90]  Nancy J Fischbein,et al.  Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. , 2005, AJNR. American journal of neuroradiology.

[91]  M. Bastin,et al.  Effects of dexamethasone on cerebral perfusion and water diffusion in patients with high-grade glioma. , 2006, AJNR. American journal of neuroradiology.

[92]  N A Thacker,et al.  Comparison of cerebral blood volume maps generated from T2* and T1 weighted MRI data in intra-axial cerebral tumours. , 2007, The British journal of radiology.

[93]  C. Forrest,et al.  Vasodilator effect and mechanism of action of vascular endothelial growth factor in skin vasculature. , 2004, American journal of physiology. Heart and circulatory physiology.

[94]  Rakesh K. Jain,et al.  Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy , 2001, Nature Medicine.

[95]  Rakesh K. Gupta,et al.  Differentiation of infective from neoplastic brain lesions by dynamic contrast-enhanced MRI , 2008, Neuroradiology.

[96]  G Johnson,et al.  Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. , 1999, Radiology.

[97]  Frederik L. Giesel,et al.  Diagnostic performance of spectroscopic and perfusion MRI for distinction of brain tumors , 2006, Neurology.

[98]  Erwin G. Van Meir,et al.  Glomeruloid microvascular proliferation orchestrated by VPF/VEGF: a new world of angiogenesis research. , 2001, The American journal of pathology.

[99]  A. Yim,et al.  Vasorelaxation induced by vascular endothelial growth factor in the human internal mammary artery and radial artery. , 2007, Vascular pharmacology.

[100]  J. Huse,et al.  Prediction of oligodendroglial tumor subtype and grade using perfusion weighted magnetic resonance imaging. , 2007, Journal of neurosurgery.

[101]  T. Mikkelsen,et al.  Associations among Magnetic Resonance Spectroscopy, Apparent Diffusion Coefficients, and Image-Guided Histopathology with Special Attention to Radiation Necrosis , 2004, Neurosurgery.

[102]  Christopher Nimsky,et al.  Metabolic Imaging of Cerebral Gliomas: Spatial Correlation of Changes in O-(2-18F-Fluoroethyl)-l-Tyrosine PET and Proton Magnetic Resonance Spectroscopic Imaging , 2008, Journal of Nuclear Medicine.

[103]  Marjorie Leeson,et al.  Fundamental Concepts , 1985, Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization.

[104]  Glyn Johnson,et al.  High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. , 2002, Radiology.

[105]  Fang Tan,et al.  The expression of PAX6, PTEN, vascular endothelial growth factor, and epidermal growth factor receptor in gliomas: relationship to tumor grade and survival. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[106]  F. B. Sørensen,et al.  Angiogenesis in breast cancer: a comparative study of the observer variability of methods for determining microvessel density. , 1998, Laboratory investigation; a journal of technical methods and pathology.

[107]  M. Schwaiger,et al.  Hypoxia imaging with FAZA-PET and theoretical considerations with regard to dose painting for individualization of radiotherapy in patients with head and neck cancer. , 2007, International journal of radiation oncology, biology, physics.

[108]  W. Cavenee,et al.  Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Tracy T Batchelor,et al.  AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. , 2007, Cancer cell.

[110]  A. Kyritsis,et al.  Mechanisms of angiogenesis in gliomas , 2006, Journal of Neuro-Oncology.

[111]  Douglas C. Miller,et al.  High cerebral blood volume in human gliomas predicts deletion of chromosome 1p: Preliminary results of molecular studies in gliomas with elevated perfusion , 2007, Journal of magnetic resonance imaging : JMRI.

[112]  Peter Wust,et al.  Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-enhanced MRI. , 2005, Magnetic resonance imaging.

[113]  D. Gadian,et al.  Delay and dispersion effects in dynamic susceptibility contrast MRI: Simulations using singular value decomposition , 2000, Magnetic resonance in medicine.

[114]  Susan M. Chang,et al.  Dynamic susceptibility contrast perfusion imaging of radiation effects in normal‐appearing brain tissue: Changes in the first‐pass and recirculation phases , 2005, Journal of magnetic resonance imaging : JMRI.

[115]  M Wannenmacher,et al.  Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence. , 2000, International journal of radiation oncology, biology, physics.

[116]  David Hearshen,et al.  Correlations between Magnetic Resonance Spectroscopy and Image-guided Histopathology, with Special Attention to Radiation Necrosis , 2002, Neurosurgery.

[117]  J D Pickard,et al.  Early radiotherapy dose response and lack of hypersensitivity effect in normal brain tissue: a sequential dynamic susceptibility imaging study of cerebral perfusion. , 2007, Clinical oncology (Royal College of Radiologists (Great Britain)).

[118]  A. Dirican,et al.  Correlation of endothelial nitric oxide synthase and vascular endothelial growth factor expression with malignancy in patients with astrocytic tumors. , 2006, Journal of B.U.ON. : official journal of the Balkan Union of Oncology.

[119]  C. Calli,et al.  Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. , 2006, European journal of radiology.

[120]  W Vach,et al.  Microvessel density compared with the Chalkley count in a prognostic study of angiogenesis in breast cancer patients , 2004, Histopathology.

[121]  Georg Breier,et al.  Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo , 1992, Nature.

[122]  Brygida Berse,et al.  Vascular permeability factor (VPF, VEGF) in tumor biology , 1993, Cancer and Metastasis Reviews.

[123]  N. Bulakbaşı,et al.  Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors. , 2005, AJNR. American journal of neuroradiology.

[124]  C. Decaestecker,et al.  Apparent Diffusion Coefficient and Cerebral Blood Volume in Brain Gliomas: Relation to Tumor Cell Density and Tumor Microvessel Density Based on Stereotactic Biopsies , 2008, American Journal of Neuroradiology.

[125]  A. Benabid,et al.  Dynamic contrast-enhanced MRI: differentiating melanoma and renal carcinoma metastases from high-grade astrocytomas and other metastases , 2002, Neuroradiology.

[126]  Geoff J M Parker,et al.  Is volume transfer coefficient (K(trans)) related to histologic grade in human gliomas? , 2005, AJNR. American journal of neuroradiology.

[127]  D. Bigner,et al.  Regional measurements of blood flow in experimental RG-2 rat gliomas. , 1983, Cancer research.

[128]  David L Buckley,et al.  Uncertainty in the analysis of tracer kinetics using dynamic contrast‐enhanced T1‐weighted MRI , 2002, Magnetic resonance in medicine.

[129]  G. Johnson,et al.  Dynamic contrast-enhanced T2*-weighted MR imaging of tumefactive demyelinating lesions. , 2001, AJNR. American journal of neuroradiology.

[130]  Yukio Motoyama,et al.  The pharmacology of the integrins , 1994, Medicinal research reviews.

[131]  Mauricio Castillo,et al.  Cerebral blood volume measurements and proton MR spectroscopy in grading of oligodendroglial tumors. , 2007, AJR. American journal of roentgenology.

[132]  J C Waterton,et al.  Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast‐enhanced dynamic MR imaging , 2000, Journal of magnetic resonance imaging : JMRI.

[133]  F. Howe,et al.  Vessel size index magnetic resonance imaging to monitor the effect of antivascular treatment in a rodent tumor model. , 2008, International journal of radiation oncology, biology, physics.

[134]  Yue Cao,et al.  Use of magnetic resonance imaging to assess blood-brain/blood-glioma barrier opening during conformal radiotherapy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[135]  A. Jackson,et al.  Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma? , 2006, AJNR. American journal of neuroradiology.

[136]  Domenico Ribatti,et al.  Review Evaluation of Microvascular Density in Tumors: pro and Contra Histology and Histopathology Cellular and Molecular Biology , 2022 .

[137]  P. Black,et al.  Growth Factors in Glioma Angiogenesis: FGFs, PDGF, EGF, and TGFs , 2000, Journal of Neuro-Oncology.

[138]  Douglas C. Miller,et al.  Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. , 2008, Radiology.

[139]  D. Bigner,et al.  Microvascular abnormalities in virally-induced canine brain tumors. Structural bases for altered blood-brain barrier function. , 1972, Journal of the neurological sciences.

[140]  Darell D. Bigner,et al.  Phase II Trial of Bevacizumab and Irinotecan in Recurrent Malignant Glioma , 2007, Clinical Cancer Research.

[141]  J. Pekar,et al.  Functional magnetic resonance imaging based on changes in vascular space occupancy , 2003, Magnetic resonance in medicine.

[142]  Yue Cao,et al.  Clinical investigation survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT , 2006 .

[143]  Glyn Johnson,et al.  Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. , 2004, AJNR. American journal of neuroradiology.

[144]  M. Menger,et al.  Characterization of Angiogenesis and Microcirculation of High–Grade Glioma: An Intravital Multifluorescence Microscopic Approach in the Athymic Nude Mouse , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[145]  E. de Divitiis,et al.  Prognostic and Survival-Related Factors in Patients with Well-Differentiated Oligodendrogliomas , 2006, Zentralblatt fur Neurochirurgie.

[146]  P. Warnke,et al.  Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours , 2006, Neuroradiology.

[147]  Isabelle Salmon,et al.  Correlation between dynamic susceptibility contrast perfusion MRI and methionine metabolism in brain gliomas: Preliminary results , 2006, Journal of magnetic resonance imaging : JMRI.

[148]  P. Tofts,et al.  Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts , 1991, Magnetic resonance in medicine.

[149]  G Johnson,et al.  Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. , 2007, AJNR. American journal of neuroradiology.

[150]  L. Allen,et al.  Monitoring Tumor Response to Antiangiogenic Sunitinib Therapy with 18F-Fluciclatide, an 18F-Labeled αVβ3-Integrin and αVβ5-Integrin Imaging Agent , 2011, The Journal of Nuclear Medicine.

[151]  R K Jain,et al.  Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. , 1994, Cancer research.

[152]  V. Tronnier,et al.  Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging , 2003, Neuroscience Letters.

[153]  S. Horvath,et al.  Relationship between Survival and Edema in Malignant Gliomas: Role of Vascular Endothelial Growth Factor and Neuronal Pentraxin 2 , 2007, Clinical Cancer Research.

[154]  S. Brem,et al.  Angiogenesis in brain tumors: a quantitative histologic study. , 1974, Surgical forum.

[155]  T. MacDonald,et al.  Phase II study of thalidomide and radiation in children with newly diagnosed brain stem gliomas and glioblastoma multiforme , 2007, Journal of Neuro-Oncology.

[156]  G J M Parker,et al.  Comparison of dynamic contrast‐enhanced MRI and dynamic contrast‐enhanced CT biomarkers in bladder cancer , 2011, Magnetic resonance in medicine.

[157]  David A. Cheresh,et al.  Integrins in cancer: biological implications and therapeutic opportunities , 2010, Nature Reviews Cancer.

[158]  B. Rosen,et al.  Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. , 1999, Journal of neurosurgery.

[159]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[160]  Samuel Valable,et al.  Assessment of blood volume, vessel size, and the expression of angiogenic factors in two rat glioma models: a longitudinal in vivo and ex vivo study , 2008, NMR in biomedicine.

[161]  G. Semenza,et al.  Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1 , 1996, Molecular and cellular biology.

[162]  S. Cha,et al.  Update on brain tumor imaging: from anatomy to physiology. , 2006, AJNR. American journal of neuroradiology.

[163]  H. Itoh,et al.  Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. , 2006, AJNR. American journal of neuroradiology.

[164]  T Metens,et al.  Stereotactic comparison among cerebral blood volume, methionine uptake, and histopathology in brain glioma. , 2007, AJNR. American journal of neuroradiology.

[165]  M. Garwood,et al.  Imaging blood flow in brain tumors using arterial spin labeling , 2000, Magnetic resonance in medicine.

[166]  Kenneth R Hess,et al.  Modeling prognosis for patients with malignant astrocytic gliomas: quantifying the expression of multiple genetic markers and clinical variables. , 2005, Neuro-oncology.

[167]  Sybill Patan,et al.  Vasculogenesis and angiogenesis. , 2004, Cancer treatment and research.

[168]  Wolfgang A Weber,et al.  11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. , 2006, International journal of radiation oncology, biology, physics.

[169]  J. Koivukangas,et al.  Low-field MR imaging of meningiomas including dynamic contrast enhancement study: evaluation of surgical and histopathologic characteristics. , 2006, AJNR. American journal of neuroradiology.

[170]  T. Mikkelsen,et al.  Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[171]  C. Zimmer,et al.  Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. , 2003, Radiology.

[172]  T Sasaki,et al.  Perfusion Imaging of Brain Tumors Using Arterial Spin-Labeling: Correlation with Histopathologic Vascular Density , 2008, American Journal of Neuroradiology.

[173]  Mario Mascalchi,et al.  Diffusion-weighted MR of the brain: methodology and clinical application. , 2005, La Radiologia medica.

[174]  Morand Piert,et al.  Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. , 2004, International journal of radiation oncology, biology, physics.

[175]  Glyn Johnson,et al.  Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. , 2002, Radiology.

[176]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[177]  D. Groothuis,et al.  Regional blood flow in ethylnitrosourea‐induced brain tumors , 1983, Annals of neurology.

[178]  K. Yamamoto,et al.  Vascularity of meningiomas and neuromas: assessment with dynamic susceptibility-contrast MR imaging. , 1994, AJR. American journal of roentgenology.

[179]  H. Larsson,et al.  Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis , 2013, Neuroradiology.

[180]  M. Menger,et al.  Vascular Microenvironment in Gliomas , 2000, Journal of Neuro-Oncology.

[181]  Alan Jackson,et al.  Abnormalities in the recirculation phase of contrast agent bolus passage in cerebral gliomas: comparison with relative blood volume and tumor grade. , 2002, AJNR. American journal of neuroradiology.