Interpreting Classification Models Using Feature Importance Based on Marginal Local Effects

[1]  Johannes Berens,et al.  Early Detection of Students at Risk – Predicting Student Dropouts Using Administrative Student Data and Machine Learning Methods , 2018, SSRN Electronic Journal.

[2]  S. Jauhiainen,et al.  Comparison of feature importance measures as explanations for classification models , 2021, SN Applied Sciences.

[3]  David A. Sontag,et al.  Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors , 2015, Big Data.

[4]  Erik Strumbelj,et al.  Explaining prediction models and individual predictions with feature contributions , 2014, Knowledge and Information Systems.

[5]  C. Mood Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We Can Do About It , 2010 .

[6]  Ankur Taly,et al.  Explainable machine learning in deployment , 2020, FAT*.

[7]  M. V. C. Guelpeli,et al.  Um Modelo Baseado em Regras para a Detecção de bots no Twitter , 2020 .

[8]  Francisco Herrera,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2020, Inf. Fusion.

[9]  Franco Turini,et al.  A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..

[10]  Filippo Menczer,et al.  Arming the public with artificial intelligence to counter social bots , 2019, Human Behavior and Emerging Technologies.

[11]  Francesca Ieva,et al.  Generalized mixed‐effects random forest: A flexible approach to predict university student dropout , 2021, Stat. Anal. Data Min..

[12]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[13]  Tamás Bartus Estimation of Marginal Effects using Margeff , 2005 .

[14]  Daniel W. Apley,et al.  Visualizing the effects of predictor variables in black box supervised learning models , 2016, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[15]  Trevor Hastie,et al.  Causal Interpretations of Black-Box Models , 2019, Journal of business & economic statistics : a publication of the American Statistical Association.

[16]  Bernd Bischl,et al.  iml: An R package for Interpretable Machine Learning , 2018, J. Open Source Softw..

[17]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .