Clique problem, cutting plane proofs and communication complexity

Motivated by its relation to the length of cutting plane proofs for the Maximum Biclique problem, we consider the following communication game on a given graph G with maximum bipartite clique size K. Two parties separately receive disjoint subsets A, B of vertices such that |A|+|B|>K. The goal is to identify a nonedge between A and B. We prove that O(logn) bits of communication are enough for any n-vertex graph.

[1]  Olaf Beyersdorff,et al.  Parameterized Complexity of DPLL Search Procedures , 2011, SAT.

[2]  Egon Balas,et al.  On graphs with polynomially solvable maximum-weight clique problem , 1989, Networks.

[3]  Johan Håstad,et al.  A Simple Lower Bound for Monotone Clique Using a Communication Game , 1992, Inf. Process. Lett..

[4]  Avi Wigderson,et al.  Monotone Circuits for Connectivity Require Super-Logarithmic Depth , 1990, SIAM J. Discret. Math..

[5]  Russell Impagliazzo,et al.  A lower bound for DLL algorithms for k-SAT (preliminary version) , 2000, SODA '00.

[6]  Stasys Jukna,et al.  Boolean Function Complexity Advances and Frontiers , 2012, Bull. EATCS.

[7]  V. E. Alekseev An upper bound for the number of maximal independent sets in a graph , 2007 .

[8]  E. Szemerédi,et al.  Sorting inc logn parallel steps , 1983 .

[9]  William J. Cook,et al.  On cutting-plane proofs in combinatorial optimization , 1989 .

[10]  Thore Husfeldt,et al.  A Communication Complexity Proof that Symmetric Functions have Logarithmic Depth , 1996 .

[11]  René Peeters,et al.  The maximum edge biclique problem is NP-complete , 2003, Discret. Appl. Math..

[12]  Leslie G. Valiant,et al.  Short Monotone Formulae for the Majority Function , 1984, J. Algorithms.

[13]  J. Moon,et al.  On cliques in graphs , 1965 .

[14]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[15]  Russell Impagliazzo,et al.  Upper and lower bounds for tree-like cutting planes proofs , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.