Multifidelity Optimization using Statistical Surrogate Modeling for Non-Hierarchical Information Sources

United States. Air Force. Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550- 09-0613)

[1]  J. Alonso,et al.  Using gradients to construct cokriging approximation models for high-dimensional design optimization problems , 2002 .

[2]  M. Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils , 1989 .

[3]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[4]  Thomas D. Economon,et al.  Stanford University Unstructured (SU 2 ): An open-source integrated computational environment for multi-physics simulation and design , 2013 .

[5]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[6]  Christiaan J. J. Paredis,et al.  A Rational Design Approach to Gaussian Process Modeling for Variable Fidelity Models , 2011, DAC 2011.

[7]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[8]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[9]  Dev Gorur Rajnarayan Trading risk and performance for engineering design optimization using multifidelity analyses , 2009 .

[10]  Juan J. Alonso,et al.  Design of a Low-Boom Supersonic Business Jet Using Cokriging Approximation Models , 2002 .

[11]  R JonesDonald,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998 .

[12]  Mathias Wintzer,et al.  Multifidelity design optimization of low-boom supersonic jets , 2008 .

[13]  Cristina H. Amon,et al.  Multiresponse Metamodeling in Simulation-Based Design Applications , 2012 .

[14]  R. A. Miller,et al.  Sequential kriging optimization using multiple-fidelity evaluations , 2006 .

[15]  Wei Chen,et al.  A New Variable-Fidelity Optimization Framework Based on Model Fusion and Objective-Oriented Sequential Sampling , 2007, DAC 2007.

[16]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[17]  Karen Willcox,et al.  A Provably Convergent Multifidelity Optimization Algorithm not Requiring High-Fidelity Derivatives , 2010 .

[18]  M. Giles,et al.  Viscous-inviscid analysis of transonic and low Reynolds number airfoils , 1986 .

[19]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[20]  R. L. Winkler Combining Probability Distributions from Dependent Information Sources , 1981 .

[21]  Leo Wai-Tsun Ng,et al.  Multifidelity approaches for optimization under uncertainty , 2014 .

[22]  Alexander I. J. Forrester,et al.  Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  P. A. Newman,et al.  Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .

[24]  Ilan Kroo,et al.  A Multifidelity Gradient-Free Optimization Method and Application to Aerodynamic Design , 2008 .

[25]  Andy J. Keane,et al.  Wing Optimization Using Design of Experiment, Response Surface, and Data Fusion Methods , 2003 .

[26]  Mark Drela,et al.  Flight Vehicle Aerodynamics , 2014 .