Nanoscale ferroelectric field-effect writing and reading using scanning tunnelling spectroscopy

Control of the density of mobile charge carriers using electric fields is widely used in a variety of metal–insulator–semiconductor structures and is the governing principle behind the operation of field-effect transistors. Ferroelectric materials possessing a switchable and non-volatile polarization field can be used as insulating layers, revealing new opportunities for device applications1,2. Advances in material processing and in particular complex oxide thin-film growth mean that high-quality field-effect devices can be based on ferroelectric/metallic oxide heterostructures3,4,5,6,7,8,9,10,11. In addition, advances in local probe techniques such as atomic force microscopy allow them to be used in the imaging and study of small ferroelectric domain structures in bulk crystals12 and thin films13,14,15,16,17,18,19,20. Meanwhile, scanning tunnelling microscopy and spectroscopy have established themselves as powerful techniques for atomic manipulation and nanometre-resolution electron tunnelling spectroscopy21,22. Here, a scanning tunnelling microscope is used to investigate the ferroelectric field effect in all-perovskite heterostructures. Scanning tunnelling spectroscopy allows us to probe the local electronic properties of the polarized channel of a ferroelectric field-effect device as a function of the field orientation. This technique can be used to read and write ferroelectric field-induced regions with a size as low as 20 nm.

[1]  Jun Hatano,et al.  Scanning force microscopy as a tool for nanoscale study of ferroelectric domains , 1996 .

[2]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[3]  T. Maruyama,et al.  Formation and observation of 50 nm polarized domains in PbZr1−xTixO3 thin film using scanning probe microscope , 1996 .

[4]  Yukio Watanabe Epitaxial all‐perovskite ferroelectric field effect transistor with a memory retention , 1995 .

[5]  K. Rabe,et al.  Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures , 2004, Science.

[6]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[7]  Thomas Tybell,et al.  Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures , 1997 .

[8]  A. Schrott,et al.  Ferroelectric field-effect transistor with a SrRuxTi1-xO3 channel , 2003 .

[9]  P. Günter,et al.  Deconvolution of topographic and ferroelectric contrast by noncontact and friction force microscopy , 1996 .

[10]  M. Beasley,et al.  Ferroelectric Field Effect in Epitaxial Thin Film Oxide SrCuO2/Pb(Zr0.52Ti0.48)O3 Heterostructures , 1995, Science.

[11]  J. Triscone,et al.  Nanoscale control of ferroelectric polarization and domain size in epitaxial Pb(Zr0.2Ti0.8)O3 thin films , 2001 .

[12]  O. Fischer,et al.  Low temperature growth of pseudocubic perovskites by off-axis rf magnetron sputtering for the realization of epitaxial ferroelectric-based heterostructures , 2005 .

[13]  M. Okano,et al.  Surface conduction on insulating BaTiO3 crystal suggesting an intrinsic surface electron layer. , 2001, Physical review letters.

[14]  Kenji Kitamura,et al.  Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy , 2002 .

[15]  Fischer,et al.  Piezoelectric response of epitaxial Pb(Zr0.2Ti0.8)O3 films measured by scanning tunneling microscopy , 2000 .

[16]  Tomoji Kawai,et al.  Electrical-field control of metal–insulator transition at room temperature in Pb(Zr0.2Ti0.8)O3/La1−xBaxMnO3 field-effect transistor , 2003 .

[17]  X. Hong,et al.  Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La 1 − x Sr x MnO 3 , 2003 .

[18]  Thomas Tybell,et al.  Ferroelectricity in thin perovskite films , 1999 .

[19]  C. Ahn,et al.  Electric field effect in correlated oxide systems , 2003, Nature.

[20]  K. Dransfeld,et al.  Local poling of ferroelectric polymers by scanning force microscopy , 1992 .

[21]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[22]  Mathews,et al.  Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures , 1997, Science.

[23]  T. Zhao,et al.  Colossal magnetoresistive manganite-based ferroelectric field-effect transistor on Si , 2004 .

[24]  Chang-Beom Eom,et al.  Fabrication and properties of epitaxial ferroelectric heterostructures with (SrRuO3) isotropic metallic oxide electrodes , 1993 .

[25]  T. Shaw,et al.  Epitaxial growth of thin films of SrTi1 − xRuxO3 − δ by pulsed laser deposition , 1996 .