Electronic-to-vibrational energy transfer reactions.X* + CO (X = O, I and Br)

[1]  M. Lin Photoexcitation and photodissociation lasers. III. mechanisms of CO laser emission from the vacuum UV photodissociation of CH2COO2 and CH2COSO2 mixtures , 1975 .

[2]  M. Lin,et al.  Chemical lasers produced from O(3P) atom reactions. IV. Carbon monoxide laser emission from the oxygen atom + cyanogen reaction , 1974 .

[3]  N. Djeu Quantitative laser measurement of very small absorptions: Studies of the O + CS→CO(V) + S reaction , 1974 .

[4]  B. Nickel Transfer and Storage of Energy by Molecules , 1974 .

[5]  T. Slanger,et al.  Electronic‐to‐vibrational energy transfer efficiency in the O(1D)–N2 and O(1D)–CO systems , 1974 .

[6]  H. Powell Vibrational relaxation of carbon monoxide using a pulsed discharge , 1973 .

[7]  M. Lin Mechanism of carbon monoxide laser emission from the methylidyne + nitric oxide reaction , 1973 .

[8]  S. Tsuchiya,et al.  Electronic-to-vibrational energy transfer in a collision of CO with Hg(3PO) , 1973 .

[9]  W. Goddard,et al.  Theoretical assignments of the low-lying electronic states of carbon dioxide , 1973 .

[10]  N. Djeu,et al.  Method for Measuring Relative Transition Probabilities of Cascading Molecular Bands: Application to CO Fundamental Bands , 1972 .

[11]  Ian W. M. Smith,et al.  Vibrational relaxation of carbon monoxide (4 ⩽ ν ⩽ 10) at T ≈ 100°K , 1972 .

[12]  R. Levine,et al.  Dynamical theory of vibrational state population distribution in electronic-to-vibrational energy transfer. Application to Hg*-sensitized IR fluorescence of diatomics , 1972 .

[13]  L. Brus,et al.  Chemical lasers produced from O(1D) atom reactions. V. Carbon monoxide stimulated emission from flash-initiated O3 + XCN systems , 1972 .

[14]  Ian W. M. Smith,et al.  Vibrational excitation of CO in the reaction: O + CS → CO + S , 1971 .

[15]  J. Polanyi,et al.  Infrared-Emission Studies of Electronic-to-Vibrational Energy Transfer. IV: Hg + HF. , 1971, Applied optics.

[16]  L. Brus,et al.  Chemical CO Laser from the O(1D) + C3O2(1Σg+)→3CO(1Σ+) Reaction , 1971 .

[17]  D. Husain,et al.  Recent advances in the chemistry of electronically excited atoms , 1970 .

[18]  K. Holdy,et al.  Molecular Dynamics of Photodissociation: Quasidiatomic Model for ICN , 1970 .

[19]  R. Cvetanovic,et al.  Collisional Deactivation of Excited Oxygen Atoms in the Photolysis of NO2 at 2288 Å , 1966 .

[20]  L. Young,et al.  Dipole Moment Function and Vibration—Rotation Matrix Elements for CO , 1966 .

[21]  R. Cvetanovic,et al.  Collisional Deactivation of the Excited Singlet Oxygen Atoms and Their Insertion into the CH Bonds of Propane , 1964 .

[22]  C. Bamford,et al.  Comprehensive Chemical Kinetics , 1976 .

[23]  S. Leone,et al.  Laser‐excited electronic‐to‐vibrational energy transfer from Br(42P1/2) to HCl and HBr , 1974 .

[24]  R. Collins,et al.  A kinetic study of vibrationally excited O2(a1Δg, ν = 1) by time-resolved absorption spectroscopy in the vacuum ultra-violet , 1972 .

[25]  E. E. Nikitin,et al.  Nichtadiabatische Übergänge bei Stößen zwischen Atomen und Molekülen. Desaktivierung von Br(42P1/2)- und J(52P1/2)-Atomen durch zweiatomige Moleküle (N2, CO) , 1970 .

[26]  J. Polanyi,et al.  Infrared‐Emission Studies of Electronic‐to‐Vibrational Energy Transfer. II. Hg*+CO , 1967 .

[27]  D. Husain,et al.  Electronically excited iodine atoms I(52P½). Part 3 , 1966 .

[28]  D. Husain,et al.  Electronically excited bromine atoms Br(42P½). Part 2.—Spin orbit relaxation , 1966 .

[29]  D. Husain,et al.  Electronically excited bromine atoms Br(42P½). Part 1.—Primary processes in the photolysis of simple bromides and spin-orbit relaxation of Br(42P½) , 1966 .

[30]  J. Polanyi,et al.  Infrared Emission Arising from Electronic—Vibrational Energy Transfer: Hg*+CO , 1963 .