Robust Portfolio Optimization with Multiple Experts

We consider mean-variance portfolio choice of a robust investor. The investor receives advice from J experts, each with a different prior for the distribution of returns. Confronted with these multiple priors the investor follows a min-max portfolio strategy. We study the structure of the robust mean-variance portfolio and empirically compare its performance with a variety of alternative portfolio strategies. The empirical tests are based on bootstrap simulations on the 25 Fama-French portfolios and on 81 European country and value portfolios. We find that the robust portfolio performs well in both settings. Robust portfolios do not exhibit the extreme weights typically observed in naive mean-variance portfolios. Robust portfolios are also better diversified than portfolios that impose short-sell constraints to suppress the symptoms of extreme weights.

[1]  W. Sharpe CAPITAL ASSET PRICES: A THEORY OF MARKET EQUILIBRIUM UNDER CONDITIONS OF RISK* , 1964 .

[2]  Raymond Kan,et al.  Optimal Portfolio Choice with Parameter Uncertainty , 2007, Journal of Financial and Quantitative Analysis.

[3]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[4]  René M. Stulz,et al.  The cost of capital in internationally integrated markets: The case of Nestlé , 1995 .

[5]  Richard O. Michaud,et al.  Efficient Asset Management: A Practical Guide to Stock Portfolio Optimization and Asset Allocation , 1998 .

[6]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[7]  Zhenyu Wang,et al.  A Shrinkage Approach to Model Uncertainty and Asset Allocation , 2005 .

[8]  Lorenzo Garlappi,et al.  Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach , 2004 .

[9]  Doron Avramov,et al.  Stock Return Predictability and Model Uncertainty , 2002 .

[10]  Robert B. Litterman,et al.  Global Portfolio Optimization , 1992 .

[11]  Philippe Jorion Bayes-Stein Estimation for Portfolio Analysis , 1986, Journal of Financial and Quantitative Analysis.

[12]  Doron Avramov,et al.  Stock Return Predictability and Model Uncertainty , 2001 .

[13]  Richard O. Michaud The Markowitz Optimization Enigma: Is 'Optimized' Optimal? , 1989 .

[14]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[15]  M. Marinacci,et al.  A Smooth Model of Decision Making Under Ambiguity , 2003 .

[16]  B. Rustem,et al.  Robust min}max portfolio strategies for rival forecast and risk scenarios , 2000 .

[17]  E. Fama,et al.  Value Versus Growth: The International Evidence , 1997 .

[18]  R. Jagannathan,et al.  Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps , 2002 .

[19]  Victor DeMiguel,et al.  Optimal Versus Naive Diversification: How Inefficient is the 1/N Portfolio Strategy? , 2009 .

[20]  E. Fama,et al.  Multifactor Explanations of Asset Pricing Anomalies , 1996 .

[21]  James L. Davis,et al.  Characteristics, Covariances, and Average Returns: 1929-1997 , 1999 .

[22]  Philippe Jorion International Portfolio Diversification with Estimation Risk , 1985 .

[23]  J. Jobson,et al.  Putting Markowitz theory to work , 1981 .

[24]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .