Identification of nonlinear cardiac cell dynamics using radial basis function regression

We present a novel method for the identification of the dynamics of physiological cardiac cell models. The main aim of the technique is to improve the computational efficiency of large-scale simulations of the electrical activity of the heart. The method identifies the dynamical attractor of a detailed physiological model using statistical learning techniques. In particular, a radial basis function regression method is used to capture the intrinsic dynamical features of the model, thus reducing the computational cost to quantitatively generate cardiac action potentials in a wide range of pacing conditions. The approach permits to recover key properties such as the action potential morphology and duration in a wide range of pacing frequencies.

[1]  Shuping Zhao,et al.  Key Management Based on Elliptic Curve Paillier Scheme in Ad Hoc Networks , 2007 .

[2]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[3]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[4]  N. Trayanova Whole-heart modeling: applications to cardiac electrophysiology and electromechanics. , 2011, Circulation research.

[5]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[6]  Hongjiu Yang,et al.  Optimal Guaranteed Cost Control for a Class of Uncertain Systems with both State and Input Delays via Delta Operator Approach , 2007, Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007).

[7]  Jack M. Rogers,et al.  Modeling the cardiac action potential using B-spline surfaces , 2000, IEEE Transactions on Biomedical Engineering.

[8]  Kurt Hornik,et al.  kernlab - An S4 Package for Kernel Methods in R , 2004 .

[9]  Socrates Dokos,et al.  Parameter estimation in cardiac ionic models. , 2004, Progress in biophysics and molecular biology.

[10]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[11]  David G. Stork,et al.  Pattern Classification , 1973 .

[12]  M. Koller,et al.  Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. , 1998, American journal of physiology. Heart and circulatory physiology.

[13]  Tao Ding,et al.  Chaotic Time Series Prediction Based on Radial Basis Function Network , 2007, SNPD.

[14]  C. Seijas,et al.  Estimation of Action Potential of the Cellular Membrane using Support Vectors Machines , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[15]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[16]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[17]  K. T. ten Tusscher,et al.  Alternans and spiral breakup in a human ventricular tissue model. , 2006, American journal of physiology. Heart and circulatory physiology.

[18]  Denis Noble,et al.  Dimensionality in cardiac modelling. , 2005, Progress in biophysics and molecular biology.

[19]  F. Fenton,et al.  Minimal model for human ventricular action potentials in tissue. , 2008, Journal of theoretical biology.

[20]  Elizabeth Cherry,et al.  Models of cardiac cell , 2008, Scholarpedia.

[21]  K H W J Ten Tusscher,et al.  Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions , 2006, Physics in medicine and biology.

[22]  Frances M. Ashcroft,et al.  Ion channels and disease : channelopathies , 2000 .

[23]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[24]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[25]  D. Noble A modification of the Hodgkin—Huxley equations applicable to Purkinje fibre action and pacemaker potentials , 1962, The Journal of physiology.

[26]  K.H.W.J. ten Tusscher,et al.  Comments on 'A model for human ventricular tissue' : reply , 2005 .

[27]  Q. Henry Wu,et al.  Local prediction of non-linear time series using support vector regression , 2008, Pattern Recognit..