Electric-field-, temperature-, and stress-induced phase transitions in relaxor ferroelectric single crystals

Electric-field-induced phase transitions have been evidenced by macroscopic strain measurements at temperatures between 25 degrees C and 100 degrees C in [001](C)-poled (1-x)Pb(Mg1/3Nb2/3)O-3-xPbTiO(3) [(PMN-xPT);x=0.25,0.305,0.31] and (1-x)Pb(Zn1/3Nb2/3)O-3-xPbTiO(3) [(PZN-xPT);x=0.05,0.065,0.085] single crystals. Such measurements provide a convenient way of ascertaining thermal and electrical phase stabilities over a range of compositions and give direct evidence for first-order phase transitions. A pseudorhombohedral (M-A)-pseudo-orthorhombic (M-C)-tetragonal (T) polarization rotation path is evidenced by two first-order-like, hysteretic discontinuities in strain within the same unipolar electric field cycle for PZN-5PT, PMN-30.5PT, and PMN-31PT whereas, in PMN-25PT, a single first-order-like M-A-T transition is observed. This agrees well with in situ structural studies reported elsewhere. Electric-field-temperature (E-T) phase diagrams are constructed showing general trends for M-A, M-C, and T phase stabilities for varying temperatures and electric fields in poled samples over the given range of compositions. The complex question of whether the M-A and M-C states constitute true phases, or rather piezoelectrically distorted versions of their rhombohedral (R) and orthorhombic (O) parents, is discussed. Finally, stress-induced phase transitions are evidenced in [001](C)-poled PZN-4.5PT by application of a moderate compressive stress (< 100 MPa) both along and perpendicularly to the poling direction (longitudinal and transverse modes, respectively). The rotation path is likely R-M-B-O, via a first-order, hysteretic rotation within the M-B monoclinic plane. The results are presented alongside a thorough review of previously reported electric-field-induced and stress-induced phase transitions in PMN-xPT and PZN-xPT.

[1]  Matthew J. Davis,et al.  Electric-field-induced orthorhombic to rhombohedral phase transition in [111]C-oriented 0.92Pb(Zn1∕3Nb2∕3)O3−0.08PbTiO3 , 2005 .

[2]  D. Vanderbilt,et al.  Electric-field induced polarization paths in P b ( Z r 1 − x Ti x ) O 3 alloys , 2001, cond-mat/0104335.

[3]  Haiqing Xu,et al.  Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition , 2001 .

[4]  I. Biaggio,et al.  Materials constants of KNbO3 relevant for electro‐ and acousto‐optics , 1993 .

[5]  Takaaki Tsurumi,et al.  Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes , 2005 .

[6]  Dragan Damjanovic,et al.  Pyroelectric properties of (1−x)Pb(Mg1∕3Nb2∕3)O3-xPbTiO3 and (1−x)Pb(Zn1∕3Nb2∕3)O3-xPbTiO3 single crystals measured using a dynamic method , 2004 .

[7]  Matthew J. Davis,et al.  Domain engineering of the transverse piezoelectric coefficient in perovskite ferroelectrics , 2005 .

[8]  Brahim Dkhil,et al.  Monoclinic structure of unpoled morphotropic high piezoelectric PMN-PT and PZN-PT compounds , 2001, cond-mat/0109217.

[9]  A. Bell Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes , 2001 .

[10]  M. Kakihana,et al.  Composition variation and the monoclinic phase within Pb(ZrxTi1-x)O3 ceramics , 2003 .

[11]  K. Echizenya,et al.  Growth of 3-in single crystals of piezoelectric Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 by the supported solution Bridgman method , 2002 .

[12]  L. Bellaiche,et al.  Morphotropic phase boundary of heterovalent perovskite solid solutions : Experimental and theoretical investigation of PbSc1/2Nb1/2O3-PbTiO3 , 2005 .

[13]  A. Singh,et al.  Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: A Rietveld study , 2002, cond-mat/0210108.

[14]  E. W. Jacobs,et al.  In situ x-ray diffraction study of an electric field induced phase transition in the single crystal relaxor ferroelectric, 92% Pb(Zn1/3Nb2/3)O3–8% PbTiO3 , 1999 .

[15]  D. Viehland,et al.  Adaptive ferroelectric states in systems with low domain wall energy: Tetragonal microdomains , 2003 .

[16]  D. Vanderbilt,et al.  Monoclinic and triclinic phases in higher-order Devonshire theory , 2000, cond-mat/0009337.

[17]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[18]  V. Topolov Intermediate monoclinic phase and elastic matching in perovskite-type solid solutions , 2002 .

[19]  Rui Zhang,et al.  Single-domain properties of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals under electric field bias , 2003 .

[20]  W. Cao,et al.  Study of electric-field-induced phase transitions in [111] oriented 0.955Pb(Zn1 / 3Nb2 / 3)O3–0.045PbTiO3 single crystals , 2005 .

[21]  W. Cao,et al.  Memory effect in [001] poled 0.92Pb(Zn1∕3Nb2∕3)O3–0.08PbTiO3 single crystals , 2005 .

[22]  L. Lim,et al.  Particle size dependent x-ray linewidth of rhombohedral phase in Pb(Zn1/3Nb2/3)O3–(6,7)%PbTiO3 , 2003 .

[23]  S. Priya,et al.  Investigation of the Ferroelectric Orthorhombic Phase in the Pb(Zn 1/3 Nb 2/3 )O 3 -PbTiO 3 System , 2002 .

[24]  M. J. Haun,et al.  A phenomenological Gibbs function for the single cell region of the PbZrO3:PbTiO3 solid solution system , 1985 .

[25]  N. Setter,et al.  The effect of boundary conditions and sample aspect ratio on apparent d/sub 33/ piezoelectric coefficient determined by direct quasistatic method , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  Zuyong Feng,et al.  Effect of uniaxial stress on the electromechanical response of ⟨001⟩-oriented Pb(Mg1∕3Nb2∕3)O3–PbTiO3 crystals , 2005 .

[27]  Z. Ye,et al.  Domain structure in the monoclinic Pm phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals , 2003, cond-mat/0306686.

[28]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[29]  Wesley S. Hackenberger,et al.  High performance single crystal piezoelectrics: applications and issues , 2002 .

[30]  B. Noheda Structure and high-piezoelectricity in lead oxide solid solutions , 2002 .

[31]  F. Bai,et al.  X-ray and neutron diffraction investigations of the structural phase transformation sequence under electric field in 0.7Pb(Mg1∕3Nb2∕3)-0.3PbTiO3 crystal , 2004, cond-mat/0402296.

[32]  Nam-Kyoung Kim,et al.  Crystallographic, dielectric, and diffuseness characteristics of PZN–PT ceramics , 1998 .

[33]  Y. Uesu,et al.  Optical Observation of Heterophase and Domain Structures in Relaxor Ferroelectrics Pb(Zn1/3Nb2/3)O3/9%PbTiO3 , 1998 .

[34]  Qiming Zhang,et al.  Phase transitional behavior and piezoelectric properties of the orthorhombic phase of Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals , 2001 .

[35]  J. C. Hicks,et al.  X-ray diffraction and phenomenological studies of the engineered monoclinic crystal domains in single crystal relaxor ferroelectrics , 2000 .

[36]  D. Viehland,et al.  Effect of uniaxial stress on the electromechanical properties of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals and ceramics , 2001 .

[37]  Z. Ye,et al.  Polar nanodomains and relaxor behaviour in (1 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals with x = 0.3-0.5 , 2005 .

[38]  D. Viehland,et al.  Anhysteretic field-induced rhombhohedral to orthorhombic transformation in 〈110〉-oriented 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 crystals , 2002 .

[39]  Dragan Damjanovic,et al.  STRESS AND FREQUENCY DEPENDENCE OF THE DIRECT PIEZOELECTRIC EFFECT IN FERROELECTRIC CERAMICS , 1997 .

[40]  B. K. Mukherjee,et al.  Piezoelectric properties and phase transitions of 〈001〉-oriented Pb(Zn1/3Nb2/3)O3–PbTiO3 single crystals , 2002 .

[41]  A. Bhalla,et al.  Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system , 1989 .

[42]  C. Chen,et al.  Effects of stress and electric field on the electromechanical properties of Pb(Mg1∕3Nb2∕3)O3–0.32PbTiO3 single crystals , 2005 .

[43]  Z. Ye,et al.  Neutron Scattering Study of the Relaxor Ferroelectric (1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 , 2003 .

[44]  N. Setter,et al.  Piezoelectric anisotropy - phase transition relations in perovskite single crystals , 2003, 14th IEEE International Symposium on Applications of Ferroelectrics, 2004. ISAF-04. 2004.

[45]  Thomas R. Shrout,et al.  Electric field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn1/3Nb2/3)O3– 0.045PbTiO3 single crystals , 1999 .

[46]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology , 1989 .

[47]  Thomas R. Shrout,et al.  Enhanced Piezoelectric Property of Barium Titanate Single Crystals with Engineered Domain Configurations , 1999 .

[48]  Z. Ye,et al.  Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3 single crystals , 2000 .

[49]  P. Rehrig,et al.  Neutron diffraction study of field-cooling effects on the relaxor ferroelectricPb[(Zn1/3Nb2/3)0.92Ti0.08]O3 , 2002, cond-mat/0207726.

[50]  E. Kisi,et al.  The giant piezoelectric effect: electric field induced monoclinic phase or piezoelectric distortion of the rhombohedral parent? , 2003 .

[51]  W. Cao,et al.  Coercive field of 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystal and its frequency dependence , 2002 .

[52]  Haiqing Xu,et al.  Compositional Homogeneity and Electrical Properties of Lead Magnesium Niobate Titanate Single Crystals Grown by a Modified Bridgman Technique , 2000 .

[53]  Kenji Uchino,et al.  Phase transitions in the Pb (Zn1/3Nb2/3)O3-PbTiO3 system , 1981 .

[54]  W. Cao,et al.  Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn/sub 1/3/Nb/sub 2/3/)O/sub 3/-0.45PbTiO/sub 3/ single crystal with designed multidomains , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[55]  V. Shuvaeva,et al.  The macroscopic symmetry of Pb(Mg1/3Nb2/3)1−xTixO3 in the morphotropic phase boundary region (x = 0.25–0.5) , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[56]  V. Shuvaeva,et al.  Birefringence imaging measurements on the phase diagram of Pb(Mg1/3Nb2/3)O3–PbTiO3 , 2005 .

[57]  G. Shirane,et al.  Development of ferroelectric order in relaxor (1-x)Pb(Mg1/3Nb2/3)O3–xPbTiO3 (0≤x≤0.15) , 2002, cond-mat/0208058.

[58]  O. Noblanc,et al.  Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric solid solutions around the morphotropic boundary , 1996 .

[59]  Huiqian Luo,et al.  Field-induced polarization rotation in (001)-cut Pb(Mg1/3Nb2/3)0.76Ti0.24O3 , 2004 .

[60]  Christopher S. Lynch,et al.  Relaxor ferroelectric PMN-32%PT crystals under stress and electric field loading: I-32 mode measurements , 2004 .

[61]  W. Cao,et al.  Interweaving domain configurations in [001]-poled rhombohedral phase 0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3 single crystals , 2003 .

[62]  Erich H. Kisi,et al.  LETTER TO THE EDITOR: Temperature-induced phase transitions in the giant-piezoelectric-effect material PZN-4.5%PT , 2001 .

[63]  Matthew J. Davis,et al.  Direct piezoelectric effect in relaxor-ferroelectric single crystals , 2004 .

[64]  Christopher S. Lynch,et al.  The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT , 1996 .

[65]  Matthew J. Davis,et al.  Correlation between dielectric anisotropy and positive or zero transverse piezoelectric coefficients in perovskite ferroelectric single crystals , 2005 .