Narrow-Linewidth Tin-Vacancy Centers in a Diamond Waveguide

We have fabricated waveguides containing tin-vacancy centers in diamond, promising optically accessible spin qubit candidates. The tin-vacancy centers in waveguides display narrow linewidths of ∼ 36 MHz.

[1]  Alison E. Rugar,et al.  Generation of Tin-Vacancy Centers in Diamond via Shallow Ion Implantation and Subsequent Diamond Overgrowth. , 2019, Nano letters.

[2]  T. Taniguchi,et al.  Spectroscopic investigations of negatively charged tin-vacancy centres in diamond , 2019, New Journal of Physics.

[3]  D. Englund,et al.  Experimental demonstration of memory-enhanced quantum communication , 2019, Nature.

[4]  Noel H. Wan,et al.  Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. , 2018, Physical review letters.

[5]  Matthew E. Trusheim,et al.  Quantum nanophotonics with group IV defects in diamond , 2019, Nature Communications.

[6]  P. Stroganov,et al.  Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface. , 2019, Physical review letters.

[7]  Mihir K. Bhaskar,et al.  Quantum Interference of Electromechanically Stabilized Emitters in Nanophotonic Devices , 2019, Physical Review X.

[8]  Dries Vercruysse,et al.  Optimized diamond quantum photonics , 2018, Symposium Latsis 2019 on Diamond Photonics - Physics, Technologies and Applications.

[9]  Alison E. Rugar,et al.  Characterization of optical and spin properties of single tin-vacancy centers in diamond nanopillars , 2018, Physical Review B.

[10]  Maxim Zalalutdinov,et al.  Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance , 2018, Nature Materials.

[11]  P. Barclay,et al.  Realizing Q > 300 000 in diamond microdisks for optomechanics via etch optimization , 2018, APL Photonics.

[12]  P. Olivero,et al.  Single-Photon Emitters in Lead-Implanted Single-Crystal Diamond , 2018, ACS Photonics.

[13]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[14]  E. Ekimov,et al.  Tin-vacancy color centers in micro- and polycrystalline diamonds synthesized at high pressures , 2018 .

[15]  P. Olivero,et al.  Photoluminescence of lead-related optical centers in single-crystal diamond , 2018, 1806.01608.

[16]  Dirk Englund,et al.  Lead-Related Quantum Emitters in Diamond , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[17]  Á. Gali,et al.  Ab Initio Magneto-Optical Spectrum of Group-IV Vacancy Color Centers in Diamond , 2018, Physical Review X.

[18]  Je-Hyung Kim,et al.  Super-Radiant Emission from Quantum Dots in a Nanophotonic Waveguide. , 2018, Nano letters.

[19]  K. Ganesan,et al.  Single Crystal Diamond Membranes and Photonic Resonators Containing Germanium Vacancy Color Centers , 2018, ACS Photonics.

[20]  Jelena Vucković,et al.  Inverse design in nanophotonics , 2018, Nature Photonics.

[21]  Dirk Englund,et al.  Two-dimensional photonic crystal slab nanocavities on bulk single-crystal diamond , 2018, Applied Physics Letters.

[22]  A. Wieck,et al.  Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide. , 2017, Nano letters.

[23]  A. Wieck,et al.  Spin–photon interface and spin-controlled photon switching in a nanobeam waveguide , 2017, Nature Nanotechnology.

[24]  F. Jelezko,et al.  Tin-Vacancy Quantum Emitters in Diamond. , 2017, Physical review letters.

[25]  P. Olivero,et al.  Single-Photon-Emitting Optical Centers in Diamond Fabricated upon Sn Implantation , 2017, 1708.01467.

[26]  Dirk Englund,et al.  Rectangular Photonic Crystal Nanobeam Cavities in Bulk Diamond , 2017, 1704.07918.

[27]  M. Lukin,et al.  Quantum Nonlinear Optics with a Germanium-Vacancy Color Center in a Nanoscale Diamond Waveguide. , 2016, Physical review letters.

[28]  M. K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[29]  Mikhail D. Lukin,et al.  Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation , 2015, 1512.03820.

[30]  E. Ekimov,et al.  Germanium–vacancy color center in isotopically enriched diamonds synthesized at high pressures , 2015 .

[31]  Yuri N. Palyanov,et al.  Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond , 2015, Scientific Reports.

[32]  Toshiro Inubushi,et al.  Germanium-Vacancy Single Color Centers in Diamond , 2015, Scientific Reports.

[33]  P. Barclay,et al.  High-Q/V Monolithic Diamond Microdisks Fabricated with Quasi-isotropic Etching. , 2015, Nano letters.

[34]  M. Atatüre,et al.  Optical signatures of silicon-vacancy spins in diamond , 2013, Nature Communications.

[35]  Christian Hepp,et al.  Electronic structure of the silicon vacancy color center in diamond. , 2013, Physical review letters.

[36]  Igor Aharonovich,et al.  Diamond-based single-photon emitters , 2011 .

[37]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[38]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.