A Multiphysic Dynamic 1-D Model of a Proton-Exchange-Membrane Fuel-Cell Stack for Real-Time Simulation

This paper presents cell-layer-scale multidomain dynamic 1-D proton-exchange-membrane fuel-cell (PEMFC) stack model using VHDL-AMS modeling language. The model covers three main fuel-cell energy domains: electrical, fluidic, and thermal. The performance and advantages of the VHDL-AMS language are shown in the first part. Then, by means of the ¿top-down¿ modeling approach, the electrical-, fluidic-, and thermal-domain models of the PEMFC stack are addressed in three separate parts. Simulation results are then compared with a Ballard 1.2-kW NEXA fuel-cell system and show a great agreement with experimental data. This complex multidomain VHDL-AMS stack model, containing more than 25 000 state variables and only few empirical coefficients (four parameters identified on the polarization curve), can be used for fuel-cell system components design and also for real-time applications. Real-time simulation is a key issue in many applications such as system control and hardware-in-the-loop applications. Moreover, this fuel-cell stack model is suitable and can be parameterized for all kinds of PEMFC including water-cooled and metal bipolar plates stacks: Only the cooling fluid and materials properties have to be changed.

[1]  Marcelo Godoy Simões,et al.  Simulation of fuel-cell stacks using a computer-controlled power rectifier with the purposes of actual high-power injection applications , 2003 .

[2]  M. Verbrugge,et al.  Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte , 1991 .

[3]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[4]  James Larminie,et al.  Fuel Cell Systems Explained: Larminie/Fuel Cell Systems Explained , 2003 .

[5]  Carlos Andrés Ramos-Paja,et al.  Minimum Fuel Consumption Strategy for PEM Fuel Cells , 2009, IEEE Transactions on Industrial Electronics.

[6]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[7]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[8]  Xinbo Ruan,et al.  A Hybrid Fuel Cell Power System , 2009, IEEE Transactions on Industrial Electronics.

[9]  P. Famouri,et al.  Electrochemical circuit model of a PEM fuel cell , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[10]  Eduard Moser,et al.  VHDL-AMS: the missing link in system design. Experiments with unified modelling in automotive engineering , 1998, Proceedings Design, Automation and Test in Europe.

[11]  S. R. Shaw,et al.  A dynamic PEM fuel cell model , 2006, IEEE Transactions on Energy Conversion.

[12]  Anna G. Stefanopoulou,et al.  Current Management in a Hybrid Fuel Cell Power System: A Model-Predictive Control Approach , 2006, IEEE Transactions on Control Systems Technology.

[13]  A. Gebregergis,et al.  The Development of Solid Oxide Fuel Cell (SOFC) Emulator , 2007, 2007 IEEE Power Electronics Specialists Conference.

[14]  Kaushik Rajashekara,et al.  Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles , 2008, IEEE Transactions on Industrial Electronics.

[15]  J. C. Amphlett,et al.  Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell. II: Empirical model development , 1995 .

[16]  M.S. Alam,et al.  Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications , 2006, IEEE Transactions on Energy Conversion.

[17]  Kwang Y. Lee,et al.  Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant , 1999 .

[18]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design , 2004 .

[19]  Luciane Neves Canha,et al.  An electrochemical-based fuel-cell model suitable for electrical engineering automation approach , 2004, IEEE Transactions on Industrial Electronics.

[20]  Anna G. Stefanopoulou,et al.  Control of Fuel Cell Power Systems , 2004 .

[21]  J. C. Amphlett Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell , 1995 .

[22]  Srdjan M. Lukic,et al.  Energy Storage Systems for Automotive Applications , 2008, IEEE Transactions on Industrial Electronics.

[23]  Abdellatif Miraoui,et al.  Modelling of fuel cells using multi-domain VHDL-AMS language , 2008 .

[24]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[25]  K. Y. Lee,et al.  An Explicit Dynamic Model for Direct Reforming Carbonate Fuel Cell Stack , 2001, IEEE Power Engineering Review.

[26]  Anna G. Stefanopoulou,et al.  Modeling and control for PEM fuel cell stack system , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[27]  A. E. Fuhs,et al.  Handbook of Fluid Dynamics and Fluid Machinery , 1996 .

[28]  Tamar Frankel [The theory and the practice...]. , 2001, Tijdschrift voor diergeneeskunde.

[29]  Peter J. Ashenden,et al.  The System Designer's Guide to VHDL-AMS , 2002 .

[30]  Giansalvo Cirrincione,et al.  A Scroll Compressor With a High-Performance Sensorless Induction Motor Drive for the Air Management of a PEMFC System for Automotive Applications , 2008, IEEE Transactions on Vehicular Technology.

[31]  A. Miraoui,et al.  A Scroll Compressor with a High Performance Induction Motor Drive for the Air Management of a PEMFC System for Automotive Applications , 2007, 2007 IEEE Industry Applications Annual Meeting.

[32]  Nigel P. Brandon,et al.  Piles a combustible , 2001 .

[33]  Frano Barbir,et al.  PEM Fuel Cells , 2006 .

[34]  Caisheng Wang,et al.  Dynamic models and model validation for PEM fuel cells using electrical circuits , 2005 .

[35]  Jung-Min Kwon,et al.  High-Efficiency Fuel Cell Power Conditioning System With Input Current Ripple Reduction , 2009, IEEE Transactions on Industrial Electronics.