Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge

This paper discusses a prey–predator model with reserved area. The feeding rate of consumers (predators) per consumer (i.e., functional response) is considered to be Beddington–DeAngelis type. The Beddington–DeAngelis functional response is similar to the Holling type II functional response but contains an extra term describing mutual interference by predators. We investigate the role of reserved region and degree of mutual interference among predators in the dynamics of system. We obtain different conditions that affect the persistence of the system. We also discuss local and global asymptotic stability behavior of various equilibrium solutions to understand the dynamics of the model system. The global asymptotic stability of positive interior equilibrium solution is established using suitable Lyapunov functional. It is found that the Hopf bifurcation occurs when the parameter corresponding to reserved region (i.e., m) crosses some critical value. Our result indicates that the predator species exist so long as prey reserve value (m) does not cross a threshold value and after this value the predator species extinct. To mimic the real-world scenario, we also solve the inverse problem of estimation of model parameter (m) using the sampled data of the system. The results can also be interpreted in different contexts such as resource conservation, pest management and bio-economics of a renewable resource. At the end, we perform some numerical simulations to illustrate our analytical findings.

[1]  Shigui Ruan,et al.  Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response , 2001, SIAM J. Appl. Math..

[2]  Syed Abbas,et al.  Almost periodic solution of a non-autonomous model of phytoplankton allelopathy , 2012 .

[3]  Tzy-Wei Hwang,et al.  Uniqueness of limit cycles of the predator–prey system with Beddington–DeAngelis functional response , 2004 .

[4]  B. Dubey,et al.  A Prey-Predator Model with a Reserved Area , 2007 .

[5]  Manoj Thakur,et al.  Stability analysis of two prey one predator model , 2012 .

[6]  Debasis Mukherjee Persistence in a Generalized Prey-Predator Model with Prey Reserve , 2012 .

[7]  T. K. Kar,et al.  Stability analysis of a prey–predator model incorporating a prey refuge , 2005 .

[8]  Rong Yuan,et al.  A prey-predator model with harvesting for fishery resource with reserve area ☆ , 2013 .

[9]  Norbert Hungerbühler,et al.  Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model☆ , 2010 .

[10]  Eileen E. Hofmann,et al.  A data assimilation technique applied to a predator-prey model , 1995 .

[11]  Maurice W. Sabelis,et al.  Spider mites: their biology, natural enemies and control: vol. 1A , 1985 .

[12]  Kusum Deep,et al.  A new mutation operator for real coded genetic algorithms , 2007, Appl. Math. Comput..

[13]  J. M. Smith Models in Ecology , 1975 .

[14]  Manoj Thakur,et al.  A modified real coded genetic algorithm for constrained optimization , 2014, Appl. Math. Comput..

[15]  Donald L. DeAngelis,et al.  A Model for Tropic Interaction , 1975 .

[16]  J. Beddington,et al.  Mutual Interference Between Parasites or Predators and its Effect on Searching Efficiency , 1975 .

[17]  Eric Delhez,et al.  A trust-region method applied to parameter identification of a simple prey–predator model , 2005 .

[18]  Peeyush Chandra,et al.  A model for fishery resource with reserve area , 2003 .

[19]  William W. Murdoch,et al.  Functional Response and Stability in Predator-Prey Systems , 1975, The American Naturalist.

[20]  H. I. Freedman,et al.  Persistence in models of three interacting predator-prey populations , 1984 .

[21]  Li Zhong,et al.  Stability analysis of a prey-predator model with holling type III response function incorporating a prey refuge , 2006, Appl. Math. Comput..

[22]  Donald L. DeAngelis,et al.  A MODEL FOR TROPHIC INTERACTION , 1975 .

[23]  Syed Abbas,et al.  Existence of almost periodic solution of a model of phytoplankton allelopathy with delay , 2012 .

[24]  Tzy-Wei Hwang,et al.  Uniqueness of the Limit Cycle for Gause-Type Predator–Prey Systems , 1999 .

[25]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[26]  Y. Kuang,et al.  Global analyses in some delayed ratio-dependent predator-prey systems , 1998 .

[27]  P. H. Kloppers,et al.  Lotka-Volterra model parameter estimation using experiential data , 2013, Appl. Math. Comput..

[28]  J. F. Gilliam,et al.  FUNCTIONAL RESPONSES WITH PREDATOR INTERFERENCE: VIABLE ALTERNATIVES TO THE HOLLING TYPE II MODEL , 2001 .

[29]  Maksat Ashyraliyev,et al.  Systems biology: parameter estimation for biochemical models , 2009, The FEBS journal.

[30]  K. Schmitt,et al.  Permanence and the dynamics of biological systems. , 1992, Mathematical biosciences.

[31]  Michael Ghil,et al.  Dynamic Meteorology: Data Assimilation Methods , 1981 .

[32]  D. DeAngelis,et al.  Effects of spatial grouping on the functional response of predators. , 1999, Theoretical population biology.

[33]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[34]  Jutao Liu,et al.  State and parameter update of a hydrodynamic-phytoplankton model using ensemble Kalman filter , 2013 .

[35]  Chris Cosner,et al.  On the Dynamics of Predator–Prey Models with the Beddington–DeAngelis Functional Response☆ , 2001 .

[36]  Yihong Du,et al.  A diffusive predator–prey model with a protection zone☆ , 2006 .

[37]  M. A. Aziz-Alaoui,et al.  Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes , 2003, Appl. Math. Lett..

[38]  Sahabuddin Sarwardi,et al.  Persistence and global stability of Bazykin predator-prey model with Beddington-DeAngelis response function , 2014, Commun. Nonlinear Sci. Numer. Simul..

[39]  G. Evans,et al.  The Use of Optimization Techniques to Model Marine Ecosystem Dynamics at the JGOFS Station at 47 degrees N 20 degrees W [and Discussion] , 1995 .

[40]  Shengqiang Liu,et al.  A Stage-structured Predator-prey Model of Beddington-DeAngelis Type , 2006, SIAM J. Appl. Math..

[41]  M. Hassell,et al.  Mutual Interference between Searching Insect Parasites , 1971 .

[42]  A. J. Lotka Elements of mathematical biology , 1956 .

[43]  Thomas G. Hallam,et al.  Persistence in food webs—I Lotka-Volterra food chains , 1979 .

[44]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[45]  Gail S. K. Wolkowicz,et al.  Bifurcation Analysis of a Predator-Prey System Involving Group Defence , 1988 .

[46]  Alan A. Berryman,et al.  The Orgins and Evolution of Predator‐Prey Theory , 1992 .

[47]  Haiyin Li,et al.  Dynamics of the density dependent predator–prey system with Beddington–DeAngelis functional response , 2011 .

[48]  Paul Waltman,et al.  Uniformly persistent systems , 1986 .

[49]  S. Hsu,et al.  Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[50]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[51]  T. K. Kar,et al.  Influence of prey reserve in a prey–predator fishery , 2006 .

[52]  Kusum Deep,et al.  Data Assimilation of a Biological Model Using Genetic Algorithms , 2006, SGAI Conf..