Two-dimensional direct-reading fluorescence spectrograph for DNA sequencing by capillary array electrophoresis.

We report a compact, two-dimensional direct-reading fluorescence spectrograph and demonstrate its application to DNA sequencing by capillary array electrophoresis. The detection cuvette is based on sheath flow, wherein the capillaries terminate in a two-dimensional array in a fluid-filled chamber that is pressurized with buffer. A thin metal plate is located downstream from the capillaries. This barrier plate has an array of holes that precisely matches the location of the capillaries. Buffer flows through the holes, drawing analyte from the capillaries in a well-defined array of thin filaments. Fluorescence is excited in the upper chamber with an elliptically shaped laser beam. The bottom chamber is sealed with a glass window and drained from the side. Fluorescence is detected by imaging the illuminated sample streams through the holes in the barrier plate. A prism is used to disperse fluorescence from each sample across a CCD camera so that the emission spectrum is monitored simultaneously from each capillary. The instrument is demonstrated in a 32-capillary configuration but can be scaled to several thousand capillaries.