YSZ-based NO2 sensor utilizing hierarchical In2O3 electrode

[1]  E. Wachsman,et al.  NO2/NO response of Cr2O3- and SnO2-based potentiometric sensors and temperature-programmed reaction evaluation of the sensor elements , 2007 .

[2]  E. Wachsman,et al.  Sensing properties and selectivities of a WO3/YSZ/Pt potentiometric NOx sensor , 2007 .

[3]  Norio Miura,et al.  HIGH-TEMPERATURE POTENTIOMETRIC/AMPEROMETRIC NOX SENSORS COMBINING STABILIZED ZIRCONIA WITH MIXED-METAL OXIDE ELECTRODE , 1998 .

[4]  Norio Miura,et al.  Sodium ion conductor based sensor attached with NaNO{sub 2} for amperometric detection of NO{sub 2} , 1996 .

[5]  Norio Miura,et al.  Improvement of NO2 a Sensing Performances by an Additional Second Component to the Nano‐Structured NiO Sensing Electrode of a YSZ‐Based Mixed‐Potential‐Type Sensor , 2006 .

[6]  Florian Solzbacher,et al.  Selectivity, stability and repeatability of In2O3 thin films towards NOx at high temperatures (≥500 °C) , 2010 .

[7]  Maria Luisa Grilli,et al.  Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes , 2004 .

[8]  Maximilian Fleischer,et al.  Method for detection of NOx in exhaust gases by pulsed discharge measurements using standard zirconia-based lambda sensors , 2010 .

[9]  Norio Miura,et al.  A review of mixed-potential type zirconia-based gas sensors , 2014, Ionics.

[10]  Maria Luisa Grilli,et al.  Nano-structured perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layers , 2004 .

[11]  G. Lu,et al.  Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary , 2011 .

[12]  Norio Miura,et al.  Reaction analysis on sensing electrode of amperometric NO2 sensor based on sodium ion conductor by using chronopotentiometry , 2001 .

[13]  Ralf Moos,et al.  Sensor for directly determining the exhaust gas recirculation rate—EGR sensor , 2006 .

[14]  G. Lu,et al.  High Performance Mixed-Potential Type NOx Sensor Based On Stabilized Zirconia and Oxide Electrode , 2014 .

[15]  N. Yamazoe,et al.  Solid-state amperometric NO2 sensor using a sodium ion conductor , 1996 .

[16]  Norio Miura,et al.  Mixed potential type sensor using stabilized zirconia and ZnFe2O4 sensing electrode for NOx detection at high temperature , 2002 .

[17]  N. Miura,et al.  Tunable NO2-Sensing Characteristics of YSZ-Based Mixed-Potential-Type Sensor Using Ni1 − x Co x O -Sensing Electrode , 2009 .

[18]  G. Lu,et al.  The effects of sintering temperature of MnCr2O4 nanocomposite on the NO2 sensing property for YSZ-based potentiometric sensor , 2013 .

[19]  Norio Miura,et al.  High-temperature sensors for NO and NO2 based onstabilized zirconiaand spinel-type oxide electrodes , 1997 .

[20]  Norio Miura,et al.  High-temperature NOx sensors using zirconia solid electrolyte and zinc-family oxide sensing electrode , 2002 .

[21]  Jian Wang,et al.  NO x Sensing Characteristics of Mixed-Potential-Type Zirconia Sensor Using NiO Sensing Electrode at High Temperatures , 2005 .

[22]  G. Lu,et al.  Mixed-potential type NOx sensor using stabilized zirconia and Cr2O3-WO3 nanocomposites , 2013, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[23]  R. Tauler,et al.  Exploring the interaction between O₃ and NOx pollution patterns in the atmosphere of Barcelona, Spain using the MCR-ALS method. , 2015, The Science of the total environment.

[24]  P. Xu,et al.  High aspect ratio In2O3 nanowires: Synthesis, mechanism and NO2 gas-sensing properties , 2008 .

[25]  Jianzhong Xiao,et al.  The effects of sintering temperature of (La0.8Sr0.2)2FeMnO6−δ on the NO2 sensing property for YSZ-based potentiometric sensor , 2015 .

[26]  Norio Miura,et al.  Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2 , 2000 .

[27]  Peng Sun,et al.  Preparation and gas sensing properties of hierarchical flower-like In2O3 microspheres , 2013 .

[28]  J. Viricelle,et al.  Improvement of the NOx selectivity for a planar YSZ sensor , 2009 .

[29]  Gyu-Tae Kim,et al.  Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires , 2010 .

[30]  Norio Miura,et al.  Sensing behavior of YSZ-based amperometric NO₂ sensors consisting of Mn-based reference-electrode and In₂O₃ sensing-electrode. , 2012, Talanta.

[31]  Daisuke Terada,et al.  Mixed-potential-type zirconia-based NOx sensor using Rh-loaded NiO sensing electrode operating at high temperatures , 2006 .

[32]  Giang Hồng Thái,et al.  High sensitivity and selectivity of mixed potential sensor based on Pt/YSZ/SmFeO3 to NO2 gas , 2013 .

[33]  Norio Miura,et al.  New auxiliary sensing materials for solid electrolyte NO2 sensors , 1994 .

[34]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[35]  N. Miura,et al.  Sensing Characteristics of YSZ-Based Mixed-Potential-Type Planar NO x Sensors Using NiO Sensing Electrodes Sintered at Different Temperatures , 2005 .

[36]  Xiumei Xu,et al.  Porous hierarchical In2O3 nanostructures: Hydrothermal preparation and gas sensing properties , 2012 .

[37]  E. Wachsman,et al.  The effect of La2CuO4 sensing electrode thickness on a potentiometric NOx sensor response , 2011 .

[38]  G. Viegi,et al.  Effect of indoor nitrogen dioxide on lung function in urban environment. , 2015, Environmental research.

[39]  E. Wachsman,et al.  NOx adsorption behavior of LaFeO3 and LaMnO3+δ and its influence on potentiometric sensor response , 2011 .

[40]  N. Yamazoe,et al.  Tungsten oxide-based semiconductor sensor for detection of nitrogen oxides in combustion exhaust , 1993 .

[41]  Jens Zosel,et al.  Perovskite related electrode materials with enhanced NO sensitivity for mixed potential sensors , 2008 .

[42]  Norio Miura,et al.  Mixed potential type NO{sub x} sensor based on stabilized zirconia and oxide electrode , 1996 .

[43]  Jian Wang,et al.  High-temperature operating characteristics of mixed-potential-type NO2 sensor based on stabilized-zirconia tube and NiO sensing electrode , 2006 .

[44]  I. Eisele,et al.  Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements , 2003 .