Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.

[1]  C. Fiegna,et al.  Advanced electro-optical simulation of nanowire-based solar cells , 2013 .

[2]  Lars Samuelson,et al.  Continuous gas-phase synthesis of nanowires with tunable properties , 2012, Nature.

[3]  T. Hsueh,et al.  Ta $_{2}$ O $_{5}$ Solar-Blind Photodetectors , 2011 .

[4]  M. Razeghi,et al.  Al(x)Ga(1-x)N-based deep-ultraviolet 320×256 focal plane array. , 2012, Optics letters.

[5]  M. Ek,et al.  Probing the wurtzite conduction band structure using state filling in highly doped InP nanowires. , 2011, Nano letters.

[6]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[7]  L. Gu,et al.  Interface engineering of high-Mg-content MgZnO/BeO/Si for p-n heterojunction solar-blind ultraviolet photodetectors , 2011 .

[8]  Hongqi Xu,et al.  Efficient light management in vertical nanowire arrays for photovoltaics. , 2013, Optics express.

[9]  N. Anttu Geometrical optics, electrostatics, and nanophotonic resonances in absorbing nanowire arrays. , 2013, Optics letters.

[10]  A. Alec Talin,et al.  A Perspective on Nanowire Photodetectors: Current Status, Future Challenges, and Opportunities , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  Grzegorz Grzela,et al.  Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. , 2011, ACS nano.

[12]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[13]  I. Åberg,et al.  Absorption of light in InP nanowire arrays , 2014, Nano Research.

[14]  K. Dick,et al.  Crystal phase-dependent nanophotonic resonances in InAs nanowire arrays. , 2014, Nano letters.

[15]  Hongqi Xu,et al.  Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes , 2011 .

[16]  Ekmel Ozbay,et al.  High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current , 2005 .

[17]  Alois Lugstein,et al.  Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. , 2011, Nanoscale.

[18]  Xie Zi'ang,et al.  Optical absorption characteristics of nanometer and submicron a-Si:H solar cells with two kinds of nano textures. , 2013, Optics express.

[19]  Manijeh Razeghi,et al.  Short-wavelength solar-blind detectors-status, prospects, and markets , 2002, Proc. IEEE.

[20]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[21]  G. Tütüncüoğlu,et al.  III–V nanowire arrays: growth and light interaction , 2014, Nanotechnology.

[22]  Frank Scholze,et al.  Recent developments of wide-bandgap semiconductor based UV sensors , 2009 .

[23]  D. Cho,et al.  Ultra-high responsivity, silicon nanowire photodetectors for retinal prosthesis , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[24]  H. Xu,et al.  Colorful InAs nanowire arrays: from strong to weak absorption with geometrical tuning. , 2012, Nano letters.

[25]  Charles M. Lieber,et al.  Size-Dependent Photoluminescence from Single Indium Phosphide Nanowires , 2002 .

[26]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[27]  E. Bakkers,et al.  Mapping the directional emission of quasi-two-dimensional photonic crystals of semiconductor nanowires using Fourier microscopy , 2012, 1311.0751.

[28]  T. Fukui,et al.  Growth of Core–Shell InP Nanowires for Photovoltaic Application by Selective-Area Metal Organic Vapor Phase Epitaxy , 2009 .

[29]  O. Glembocki,et al.  Indium Phosphide (InP) , 1997 .

[30]  K. Melde,et al.  FDTD modeling of solar energy absorption in silicon branched nanowires. , 2013, Optics express.

[31]  A Solar-Blind -Ga O Nanowire Photodetector , 2010 .

[32]  Federico Capasso,et al.  Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation , 2008 .

[33]  Bernd Witzigmann,et al.  Light absorption and emission in nanowire array solar cells. , 2010, Optics express.

[34]  Federico Capasso,et al.  Optically pumped nanowire lasers: invited review , 2010 .

[35]  P. Yang,et al.  Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics , 2002 .

[36]  Ningfeng Huang,et al.  Broadband absorption of semiconductor nanowire arrays for photovoltaic applications , 2012 .

[37]  Paul W. Leu,et al.  Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells. , 2014, Optics express.

[38]  B. Witzigmann,et al.  Dispersion, wave propagation and efficiency analysis of nanowire solar cells. , 2009, Optics express.