Dy3+/Er3+/Tm3+ tri-doped tellurite glass with enhanced broadband mid-infrared emission

[1]  S. Dai,et al.  High content Er3+ doped ZBLAN glass: The spectral characteristics and high slope efficiency MIR laser investigation , 2021 .

[2]  Yaxun Zhou,et al.  Enhanced 2.7 µm mid-infrared emission in Er3+/Ho3+ co-doped tellurite glass , 2021, Optics & Laser Technology.

[3]  Anping Yang,et al.  Dy3+-doped Ga2S3-Sb2S3-La2S3 chalcogenide glass for mid-infrared fiber laser medium , 2021 .

[4]  Hongwei Song,et al.  Efficient enhancement of ~ 2.85 μm emission in Yb3+/Ho3+ co-doped Na5Y9F32 single crystal via Sm3+ deactivation , 2021 .

[5]  A. Benayad,et al.  Tm3+ codoping for mid-infrared laser applications of Dy3+ doped CaF2 crystals , 2021 .

[6]  N. Veeraiah,et al.  Optimized NIR and MIR emission properties of Tm3+/Ho3+ ions in lead sulfo phosphate glasses , 2021 .

[7]  M. F. Churbanov,et al.  Cascade sensitization of mid-infrared Ce3+ luminescence by Dy3+ ions in selenide glass , 2021 .

[8]  M. Shoaib,et al.  Comparative Study of Er3+ Ions Doped Phosphate Based Oxide and Oxy-fluoride Glasses for Lasers Applications , 2021 .

[9]  J. In,et al.  Engineering of TeO2-ZnO-BaO-Based Glasses for Mid-Infrared Transmitting Optics , 2020, Materials.

[10]  M. Kochanowicz,et al.  Structure, luminescence and energy transfer of fluoroindate glasses co-doped with Er3+/Ho3+ , 2020 .

[11]  Lizhong Sun,et al.  Enhanced 1–5 μm near- and mid-infrared emission in Ho3+/Yb3+ codoped TeO2-ZnF2 oxyfluorotellurite glasses , 2020 .

[12]  B. Burtan-Gwizdała,et al.  Thermal and spectroscopic properties of Er3+-doped fluorotellurite glasses modified with TiO2 and BaO , 2020, Optical Materials.

[13]  Weichao Wang,et al.  Glass‐forming regions and enhanced 2.7 μm emission by Er 3+ heavily doping in TeO 2 –Ga 2 O 3 –R 2 O (or MO) glasses , 2020 .

[14]  Yaxun Zhou,et al.  Broadband flat near-infrared emission from tellurite glass doped with Tm3+, Er3+ and Ag NPs , 2020 .

[15]  Shobha Rani Depuru,et al.  Enhancement of 1.8 μm emission in Er3+/Tm3+ co-doped tellurite glasses: Role of energy transfer and dual wavelength pumping schemes , 2020 .

[16]  M. Mahdi,et al.  Optical studies on Tb3+: Dy3+ singly and doubly doped Borosilicate glasses for white light and solid state lighting applications , 2020 .

[17]  D. Sun,et al.  Spectroscopic and laser properties of Er:LuSGG crystal for high-power ∼2.8 µm mid-infrared laser. , 2020, Optics express.

[18]  Pengfei Wang,et al.  Investigation of Dy3+/Tm3+ co-doped ZrF4-BaF2-YF3-AlF3 fluoride glass for efficient 2.9 μm mid-infrared laser applications , 2020 .

[19]  T. Zheng,et al.  Enhanced mid-infrared emission in Er3+/Tm3+ co-doped tungsten-tellurite glasses , 2019, Infrared Physics & Technology.

[20]  Junjie Zhang,et al.  The mid-infrared emission properties and energy transfer of Tm3+ /Er3+ co-doped tellurite glass pumped by 808/980nm laser diodes , 2019, Journal of Luminescence.

[21]  Junjie Zhang,et al.  Effect of introduction of TiO2 and GeO2 oxides on thermal stability and 2 μm luminescence properties of tellurite glasses , 2019, Ceramics International.

[22]  J. Kaewkhao,et al.  Effect of alkaline earth on decay time of Dy3+ doped in Li2O-B2O3 glasses using pulse X-ray excitation , 2019, Materials Today: Proceedings.

[23]  R. Abbas,et al.  Effect of heat treatment on erbium-doped tellurite glass , 2019, Materials Chemistry and Physics.

[24]  M. Mahdi,et al.  Optical and dielectric studies for Tb3+/Sm3+ co-doped borate glasses for solid-state lighting applications , 2018, Optical Materials.

[25]  S. Marzouk,et al.  Investigation of luminescence parameters of novel glasses with composition TeO2-ZnO-NaF-MoO2-Er2O3 as laser material , 2018, Journal of Non-Crystalline Solids.

[26]  A. Slobodyuk,et al.  Crystallization and luminescence properties of Eu 3 + -doped ZrF 4 -BaF 2 -NaPO 3 glass and glass ceramics , 2018 .

[27]  Junjie Zhang,et al.  Broadband 2.9 μm emission and high energy transfer efficiency in Er3+/Dy3+ co-doped fluoroaluminate glass , 2018 .

[28]  Yangjian Cai,et al.  Broadband ∼3 μm mid-infrared emission in Dy 3+ /Yb 3+ co-doped germanate glasses , 2018 .

[29]  Junjie Zhang,et al.  Investigation of broadband mid-infrared emission and quantitative analysis of Dy-Er energy transfer in tellurite glasses under different excitations , 2017 .

[30]  Junjie Zhang,et al.  Low-hydroxy Dy 3+ /Nd 3+ co-doped fluoride glass for broadband 2.9 µm luminescence properties , 2017 .

[31]  Junjie Zhang,et al.  Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy 3+ /Tm 3+ co-doped tellurite glass , 2017 .

[32]  K. Biswas,et al.  Role of iodine in broadening the optical window of As-Sb-S-I chalcogenide glass system , 2017 .

[33]  C. K. Jayasankar,et al.  Spectroscopic and pump power dependent upconversion studies of Er3+-doped lead phosphate glasses for photonic applications , 2017 .

[34]  C. K. Jayasankar,et al.  Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses , 2016 .

[35]  Ying Tian,et al.  Broadband mid-infrared 2.8μm emission in Ho3+/Yb3+-codoped germanate glasses , 2016 .

[36]  Lili Hu,et al.  2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass , 2015 .

[37]  E. Yousef Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application , 2013 .

[38]  Pengfei Wang,et al.  Investigation of mid-IR luminescence properties and energy transfer in Dy3+-doped and Dy3+, Tm3+-codoped chalcohalide glasses , 2013 .

[39]  Ross Stanley,et al.  Plasmonics in the mid-infrared , 2012, Nature Photonics.

[40]  O. L. Alves,et al.  Optical and physical properties of Er3+-doped oxy-fluoride tellurite glasses , 2011 .

[41]  C. K. Jayasankar,et al.  Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass–ceramics , 2010 .

[42]  G. Huber,et al.  Laser emission of erbium-doped fluoride bulk glasses in the spectral range from 2.7 to 2.8 mum. , 1999, Optics letters.

[43]  I. Ranieri,et al.  Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals , 1997 .

[44]  M. Poulain,et al.  Glass Forming Ability Criterion , 1987 .

[45]  D. L. Dexter,et al.  Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids , 1970 .

[46]  D. Mccumber,et al.  Theory of Phonon-Terminated Optical Masers , 1964 .

[47]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[48]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[49]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .