Single-molecule STED microscopy with photostable organic fluorophores.

In recent years, fluorescencemicroscopy techniques have been invented that are no longer fundamentally limited by diffraction despite using visible light focused by conventional optical elements. Contrary to earlier attempts to improve the spatial resolution, such as near-field optics and aperture filters, all far-field fluorescence ‘‘nanoscopy’’ methods known to date rely on a judicious exploitation of selected fluorophore properties. In particular, all are based on utilizing a molecular mechanism that renders the fluorophores incapable of responding with fluorescence emission to excitation light. This fluorescence inhibition mechanism is implemented in the image formation in such away that fluorophores that are closer than the diffraction limit emit sequentially in time and hence can be discerned. In stimulated emission depletion (STED) microscopy, fluorescence is inhibited by subjecting the dye molecules to an additional beam of light, thus inducing stimulated emission from the fluorescent state S1 to the ground state S0. The

[1]  M. Sauer,et al.  Hochauflösende Mikroskopie mit kleinen organischen Farbstoffen , 2009 .

[2]  Jan Vogelsang,et al.  Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy , 2009, Proceedings of the National Academy of Sciences.

[3]  Mike Heilemann,et al.  Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[4]  Jan Vogelsang,et al.  On the mechanism of Trolox as antiblinking and antibleaching reagent. , 2009, Journal of the American Chemical Society.

[5]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[6]  M. Heilemann,et al.  Photoswitches: Key molecules for subdiffraction‐resolution fluorescence imaging and molecular quantification , 2009 .

[7]  P. Tinnefeld,et al.  Superresolution microscopy on the basis of engineered dark states. , 2008, Journal of the American Chemical Society.

[8]  Mike Heilemann,et al.  Photoswitching microscopy with standard fluorophores , 2008 .

[9]  Philip Tinnefeld,et al.  Fluoreszenzmikroskopie unterhalb der optischen Auflösungsgrenze mit konventionellen Fluoreszenzsonden , 2008 .

[10]  Philip Tinnefeld,et al.  Ein System aus Reduktions- und Oxidationsmittel verringert Photobleichen und Blinken von Fluoreszenzfarbstoffen† , 2008 .

[11]  M. Gustafsson,et al.  Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy , 2008, Science.

[12]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[13]  Andreas Schönle,et al.  Resolution scaling in STED microscopy. , 2008, Optics express.

[14]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[15]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[16]  Christian Eggeling,et al.  Strategies to improve photostabilities in ultrasensitive fluorescence spectroscopy. , 2007, The journal of physical chemistry. A.

[17]  Mike Heilemann,et al.  Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-based photonic wires. , 2006, Journal of the American Chemical Society.

[18]  Christian Eggeling,et al.  Macromolecular-scale resolution in biological fluorescence microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[20]  M. Garcia-Parajo,et al.  Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules. , 2005, Physical review letters.

[21]  Philip Tinnefeld,et al.  Neue Wege in der Einzelmolekül‐Fluoreszenzspektroskopie: Herausforderungen für die Chemie und Einfluss auf die Biologie , 2005 .

[22]  Volker Westphal,et al.  Nanoscale resolution in the focal plane of an optical microscope. , 2005, Physical review letters.

[23]  M. Heilemann,et al.  Carbocyanine dyes as efficient reversible single-molecule optical switch. , 2005, Journal of the American Chemical Society.

[24]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[25]  K. Weber,et al.  Specific visualization of tubulin-containing structures in tissue culture cells by immunofluorescence. Cytoplasmic microtubules, vinblastine-induced paracrystals, and mitotic figures. , 1975, Experimental cell research.

[26]  Benjamin Harke,et al.  Three-dimensional nanoscopy of colloidal crystals. , 2008, Nano letters.

[27]  S. Hell,et al.  Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2008, Science.