Finite element for composite plate bending based on efficient higher order theory

A triangular bending element based on an efficient higher order plate theory is developed for symmetric laminated composites. This nonconforming element has five degrees of freedom in each node. It passes proper bending and shear patch tests in arbitrary meshes in isotropic materials. Thus it converges to the exact solution. To demonstrate the element and compare with other theories, finite element solutions are obtained for a static bending problem under sinusoidal loading. The present finite element results give deflections and stresses that are in good agreement with three-dimensional elasticity solutions. Thus this element provides an efficient and accurate tool for the analysis of symmetric multilayered composite plates

[1]  Bernhard Specht,et al.  Modified shape functions for the three‐node plate bending element passing the patch test , 1988 .

[2]  Ahmed K. Noor,et al.  Stress and free vibration analyses of multilayered composite plates , 1989 .

[3]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[4]  J. N. Reddy,et al.  A plate bending element based on a generalized laminate plate theory , 1988 .

[5]  E. Hinton,et al.  The finite element analysis of homogeneous and laminated composite plates using a simple higher order theory , 1986 .

[6]  Koganti M. Rao,et al.  Analysis of thick laminated anisotropic composite plates by the finite element method , 1990 .

[7]  Ahmed K. Noor,et al.  Assessment of computational models for multilayered anisotropic plates , 1990 .

[8]  M. D. Sciuva,et al.  BENDING, VIBRATION AND BUCKLING OF SIMPLY SUPPORTED THICK MULTILAYERED ORTHOTROPIC PLATES: AN EVALUATION OF A NEW DISPLACEMENT MODEL , 1986 .

[9]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[10]  Maenghyo Cho,et al.  An efficient higher-order plate theory for laminated composites , 1992 .

[11]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[12]  J. N. Reddy,et al.  A generalization of two-dimensional theories of laminated composite plates† , 1987 .

[13]  R. Christensen,et al.  A High-Order Theory of Plate Deformation—Part 2: Laminated Plates , 1977 .

[14]  Maenghyo Cho,et al.  Efficient higher order composite plate theory for general lamination configurations , 1993 .

[15]  J. N. Reddy,et al.  Buckling and vibration of laminated composite plates using various plate theories , 1989 .

[16]  Tarun Kant,et al.  A Simple Finite Element Formulation of a Higher-order Theory for Unsymmetrically Laminated Composite Plates , 1988 .

[17]  Tarun Kant,et al.  Finite element analysis of laminated composite plates using a higher-order displacement model , 1988 .

[18]  Koganti M. Rao,et al.  Analysis of sandwich plates using a hybrid-stress finite element , 1991 .

[19]  M. D. Sciuva Evaluation of some multilayered, shear-deformable plate elements , 1985 .

[20]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[21]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[22]  Hidenori Murakami,et al.  A high-order laminated plate theory with improved in-plane responses☆ , 1987 .

[23]  J. N. Reddy,et al.  A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates , 1986 .

[24]  Tarun Kant,et al.  Finite element transient dynamic analysis of isotropic and fibre reinforced composite plates using a higher-order theory , 1988 .

[25]  M. Di Sciuva,et al.  An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates , 1987 .