Computational aspects of monotone dualization: A brief survey

Dualization of a monotone Boolean function represented by a conjunctive normal form (CNF) is a problem which, in different disguise, is ubiquitous in many areas including Computer Science, Artificial Intelligence, and Game Theory to mention some of them. It is also one of the few problems whose precise tractability status (in terms of polynomial-time solvability) is still unknown, and now open for more than 25 years. In this paper, we briefly survey computational results for this problem, where we focus on the famous paper by Fredman and Khachiyan [On the complexity of dualization of monotone disjunctive normal forms, J. Algorithms 21 (1996) 618-628], which showed that the problem is solvable in quasi-polynomial time (and thus most likely not co-NP-hard), as well as on follow-up works. We consider computational aspects including limited nondeterminism, probabilistic computation, parallel and learning-based algorithms, and implementations and experimental results from the literature. The paper closes with open issues for further research.

[1]  Christos H. Papadimitriou,et al.  NP-Completeness: A Retrospective , 1997, ICALP.

[2]  N. A. Sokolov On the optimal evaluation of monotonic Boolean functions , 1982 .

[3]  Vladimir Gurvich,et al.  Computing Many Maximal Independent Sets for Hypergraphs in Parallel , 2007, Parallel Process. Lett..

[4]  Toshihide Ibaraki,et al.  The Maximum Latency and Identification of Positive Boolean Functions , 1994, SIAM J. Comput..

[5]  Hisao Tamaki,et al.  Space-efficient enumeration of minimal transversals of a hypergraph , 2000 .

[6]  Elias C. Stavropoulos,et al.  Evaluation of an Algorithm for the Transversal Hypergraph Problem , 1999, WAE.

[7]  Heikki Mannila,et al.  Algorithms for Inferring Functional Dependencies from Relations , 1994, Data Knowl. Eng..

[8]  James Bailey,et al.  A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns , 2003, Third IEEE International Conference on Data Mining.

[9]  Eugene L. Lawler,et al.  Generating all Maximal Independent Sets: NP-Hardness and Polynomial-Time Algorithms , 1980, SIAM J. Comput..

[10]  Elias C. Stavropoulos,et al.  Monotone Boolean dualization is in co-NP[log2n] , 2003, Inf. Process. Lett..

[11]  Vladimir Gurvich,et al.  An inequality for polymatroid functions and its applications , 2003, Discret. Appl. Math..

[12]  Jinyan Li,et al.  Mining border descriptions of emerging patterns from dataset pairs , 2005, Knowledge and Information Systems.

[13]  Vladimir Gurvich,et al.  A New Algorithm for the Hypergraph Transversal Problem , 2005, COCOON.

[14]  Vladimir Gurvich,et al.  Generating Maximal Independent Sets for Hypergraphs with Bounded Edge-Intersections , 2004, LATIN.

[15]  Richard C. T. Lee,et al.  A New Algorithm for Generating Prime Implicants , 1970, IEEE Transactions on Computers.

[16]  Michael Frazier,et al.  Learning conjunctions of Horn clauses , 2004, Machine Learning.

[17]  Kazuhisa Makino,et al.  New Algorithms for Enumerating All Maximal Cliques , 2004, SWAT.

[18]  E. Borosa,et al.  Dual-bounded generating problems: weighted transversals of a hypergraph , 2004 .

[19]  Jan C. Bioch Dualization, decision lists and identification of monotone discrete functions , 2004, Annals of Mathematics and Artificial Intelligence.

[20]  D N Gainanov On one criterion of the optimality of an algorithm for evaluating monotonic Boolean functions , 1985 .

[21]  Vladimir Gurvich,et al.  An Intersection Inequality for Discrete Distributions and Related Generation Problems , 2003, ICALP.

[22]  Vladimir Gurvich,et al.  An Efficient Incremental Algorithm for Generating All Maximal Independent Sets in Hypergraphs of Bounded Dimension , 2000, Parallel Process. Lett..

[23]  Dimitrios Gunopulos,et al.  Data mining, hypergraph transversals, and machine learning (extended abstract) , 1997, PODS '97.

[24]  Kazuhisa Makino Efficient dualization of O(log n)-term monotone disjunctive normal forms , 2003, Discret. Appl. Math..

[25]  Vladimir Gurvich,et al.  Dual-Bounded Generating Problems: All Minimal Integer Solutions for a Monotone System of Linear Inequalities , 2002, SIAM J. Comput..

[26]  Franz Wotawa,et al.  A variant of Reiter's hitting-set algorithm , 2001, Inf. Process. Lett..

[27]  Takeaki Uno,et al.  Detailed Description of an Algorithm for Enumeration of Maximal Frequent Sets with Irredundant Dualization , 2003, FIMI.

[28]  Georg Gottlob,et al.  Hypergraph Transversal Computation and Related Problems in Logic and AI , 2002, JELIA.

[29]  Toshihide Ibaraki,et al.  Polynomial-Time Recognition of 2-Monotonic Positive Boolean Functions Given by an Oracle , 1997, SIAM J. Comput..

[30]  Vladimir Gurvich,et al.  An Efficient Implementation of a Quasi-polynomial Algorithm for Generating Hypergraph Transversals , 2003, ESA.

[31]  Vladimir Gurvich,et al.  On Maximal Frequent and Minimal Infrequent Sets in Binary Matrices , 2003, Annals of Mathematics and Artificial Intelligence.

[32]  Thomas Eiter,et al.  Exact Transversal Hypergraphs and Application to Boolean µ-Functions , 1994, J. Symb. Comput..

[33]  Toshihide Ibaraki,et al.  Bidual Horn Functions and Extensions , 1999, Discret. Appl. Math..

[34]  Elias C. Stavropoulos,et al.  Journal of Graph Algorithms and Applications an Efficient Algorithm for the Transversal Hypergraph Generation , 2022 .

[35]  Alex Kean,et al.  An Incremental Method for Generating Prime Implicants/Impicates , 1990, J. Symb. Comput..

[36]  Richard M. Karp,et al.  A fast parallel algorithm for the maximal independent set problem , 1985, JACM.

[37]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[38]  Carlos Doiuingo Exact Learning of Subclasses of CDNF Formulas with Membership Queries , 2005 .

[39]  Leonid Khachiyan,et al.  On the Complexity of Dualization of Monotone Disjunctive Normal Forms , 1996, J. Algorithms.

[40]  Mihalis Yannakakis,et al.  On Generating All Maximal Independent Sets , 1988, Inf. Process. Lett..

[41]  Toshihide Ibaraki,et al.  Complexity of Identification and Dualization of Positive Boolean Functions , 1995, Inf. Comput..

[42]  Antonio Sassano,et al.  An O(mn) Algorithm for Regular Set-Covering Problems , 1987, Theor. Comput. Sci..

[43]  Jaakko Astola,et al.  Almost all monotone Boolean functions are polynomially learnable using membership queries , 2001, Inf. Process. Lett..

[44]  Shuji Tsukiyama,et al.  A New Algorithm for Generating All the Maximal Independent Sets , 1977, SIAM J. Comput..

[45]  Russell Greiner,et al.  A Correction to the Algorithm in Reiter's Theory of Diagnosis , 1989, Artif. Intell..

[46]  Kazuhisa Makino,et al.  Abduction and the Dualization Problem , 2003, Discovery Science.

[47]  Khaled M. Elbassioni An Algorithm for Dualization in Products of Lattices and Its Applications , 2002, ESA.

[48]  Toshihide Ibaraki,et al.  Double Horn Functions , 1998, Inf. Comput..

[49]  Matthias Hagen On the fixed-parameter tractability of the equivalence test of monotone normal forms , 2007, Inf. Process. Lett..

[50]  Ramesh Krishnamurti,et al.  Self-Duality of Bounded Monotone Boolean Functions and Related Problems , 2000, ALT.

[51]  Peter Damaschke,et al.  Parameterized enumeration, transversals, and imperfect phylogeny reconstruction , 2004, Theor. Comput. Sci..

[52]  Toshihide Ibaraki,et al.  A Fast and Simple Algorithm for Identifying 2-Monotonic Positive Boolean Functions , 1995, J. Algorithms.

[53]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[54]  Khaled M. Elbassioni On Dualization in Products of Forests , 2002, STACS.

[55]  Georg Gottlob,et al.  New Results on Monotone Dualization and Generating Hypergraph Transversals , 2003, SIAM J. Comput..

[56]  Matthias Hagen Lower Bounds for Three Algorithms for the Transversal Hypergraph Generation , 2007, WG.

[57]  Li Lin,et al.  The computation of hitting sets: Review and new algorithms , 2003, Inf. Process. Lett..

[58]  Georg Gottlob,et al.  Identifying the Minimal Transversals of a Hypergraph and Related Problems , 1995, SIAM J. Comput..

[59]  Roni Khardon Translating between Horn Representations and their Characteristic Models , 1995, J. Artif. Intell. Res..

[60]  Daniel Courgeau,et al.  Roy Bernard — Algèbre moderne et théorie des graphes orientées vers les sciences économiques et sociales. Tome I : notions et résultats fondamentaux. Tome II : applications et problèmes spécifiques , 1972, Population.

[61]  Leonard Pitt,et al.  Efficient Read-Restricted Monotone CNF/DNF Dualization by Learning with Membership Queries , 1999, Machine Learning.

[62]  Takeaki Uno A Practical Fast Algorithm for Enumerating Minimal SetCoverings , 2002 .

[63]  Yves Crama,et al.  Dualization of regular Boolean functions , 1987, Discret. Appl. Math..

[64]  Leonard Pitt,et al.  Generating all maximal independent sets of bounded-degree hypergraphs , 1997, COLT '97.

[65]  Vladimir Gurvich,et al.  Dual-Bounded Generating Problems: Partial and Multiple Transversals of a Hypergraph , 2001, SIAM J. Comput..

[66]  Ramesh Krishnamurti,et al.  Average Case Self-Duality of Monotone Boolean Functions , 2004, Canadian Conference on AI.

[67]  P. Seymour ON THE TWO-COLOURING OF HYPERGRAPHS , 1974 .

[68]  Bruno Simeone,et al.  Polynomial-time algorithms for regular set-covering and threshold synthesis , 1985, Discret. Appl. Math..

[69]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, CACM.

[70]  Vladimir Gurvich,et al.  On Generating the Irredundant Conjunctive and Disjunctive Normal Forms of Monotone Boolean Functions , 1999, Discret. Appl. Math..

[71]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[72]  Judy Goldsmith,et al.  Limited nondeterminism , 1996, SIGA.

[73]  Evangelos Triantaphyllou,et al.  Minimizing the Average Query Complexity of Learning Monotone Boolean Functions , 2002, INFORMS J. Comput..

[74]  Bruno Simeone,et al.  A O(nm)-Time Algorithm for Computing the Dual of a Regular Boolean Function , 1994, Discret. Appl. Math..

[75]  E. Lawler Covering Problems: Duality Relations and a New Method of Solution , 1966 .

[76]  Vladimir Gurvich,et al.  On the frequency of the most frequently occurring variable in dual monotone DNFs , 1997, Discret. Math..

[77]  Ron Rymon An SE-tree-based prime implicant generation algorithm , 2005, Annals of Mathematics and Artificial Intelligence.

[78]  Vladimir Gurvich,et al.  Generating dual-bounded hypergraphs , 2002, Optim. Methods Softw..

[79]  Carlos Domingo Polynominal Time Algorithms for Some Self-Duality Problems , 1997, CIAC.

[80]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[81]  Dimitrios Gunopulos,et al.  Data mining, hypergraph transversals, and machine learning (extended abstract) , 1997, PODS.