Inelastic behavior modelling of concrete in low and high strain rate dynamics

This work deals with response modeling of concrete for dynamic loading. As in statics one has to account for substantial difference of inelastic response in tension and compression, the anisotropy of the response induced by complex cracking patterns and the need of irreversible deformation due to frictional sliding or non-closing cracks. On the top of that, in dynamics, we also have to handle the hardening or softening phenomena which explain a particular hysteretic response for a given cyclic loading as well as the strain rate effects. The latter should further be addressed separately for high as opposed to low strain rates. The main goal of this work is to develop the concrete constitutive model capable of reproducing the salient features experimentally observed. We present one theoretical development for the constitutive model of concrete at low strain rates. The same kind of developments are then carried out for high strain dynamic behavior. Both chosen models belong to the class of coupled plasticity damage models briefly presented.

[1]  P. Rossi,et al.  Influence of cracking in the presence of free water on the mechanical behaviour of concrete , 1991 .

[2]  D. Halm,et al.  An anisotropic model of damage and frictional sliding for brittle materials , 1998 .

[3]  Michael D. Kotsovos,et al.  Effect of testing techniques on the post-ultimate behaviour of concrete in compression , 1983 .

[4]  Jacob Lubliner,et al.  A simple model of generalized plasticity , 1991 .

[5]  Roman Lackner,et al.  An anisotropic elastoplastic‐damage model for plain concrete , 1998 .

[6]  A. Ibrahimbegovic,et al.  Viscoplasticity model at finite deformations with combined isotropic and kinematic hardening , 2000 .

[7]  Laurent Daudeville,et al.  Numerical Study of Compressive Behavior of Concrete at High Strain Rates , 1999 .

[8]  F. Sidoroff,et al.  Damage Induced Elastic Anisotropy , 1982 .

[9]  F. Ragueneau Fonctionnement dynamique des structures en béton : influence des comportements hystériques locaux , 1999 .

[10]  Sanjay Govindjee,et al.  Anisotropic modelling and numerical simulation of brittle damage in concrete , 1995 .

[11]  H. Schreyer,et al.  Combined Plasticity and Damage Mechanics Model for Plain Concrete , 1990 .

[12]  Jean-François Dubé,et al.  Rate Dependent Damage Model for Concrete in Dynamics , 1996 .

[13]  S. H. Perry,et al.  Compressive behaviour of concrete at high strain rates , 1991 .

[14]  Zdeněk P. Bažant,et al.  New explicit microplane model for concrete: Theoretical aspects and numerical implementation , 1992 .

[15]  Jacky Mazars,et al.  Damage model for concrete‐like materials coupling cracking and friction, contribution towards structural damping: first uniaxial applications , 2000 .

[16]  Laurent Daudeville,et al.  Compaction and tensile damage in concrete: constitutive modelling and application to dynamics , 2000 .

[17]  Zenon Mróz,et al.  On the description of anisotropic workhardening , 1967 .

[18]  M. Terrien EMISSION ACOUSTIQUE ET "COMPORTEMENT MECANIQUE POST-CRITIQUE" D'UN BETON SOLLICITE EN TRACTION , 1980 .

[19]  J. Klepaczko,et al.  An experimental method for dynamic tensile testing of concrete by spalling , 2001 .

[20]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[21]  J. Ju,et al.  On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects , 1989 .

[22]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[23]  Michael Ortiz,et al.  An analysis of a new class of integration algorithms for elastoplastic constitutive relations , 1986 .

[24]  Arne Hillerborg,et al.  Results of three comparative test series for determining the fracture energyGF of concrete , 1985 .

[25]  Ferhun C. Caner,et al.  Microplane Model M4 for Concrete. I: Formulation with Work-Conjugate Deviatoric Stress , 2000 .

[26]  M. G. Salvadori,et al.  Numerical methods in engineering , 1955 .

[27]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[28]  Zdenek P. Bazant,et al.  Confined Compression Tests of Cement Paste and Concrete up to 300 ksi , 1986 .

[29]  C. Saouridis Identification et numerisation objectives de comportements adoucissants : une approche multiechelle de l'endommagement du beton , 1988 .

[30]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[31]  Whirley DYNA3D: A nonlinear, explicit, three-dimensional finite element code for solid and structural mechanics , 1993 .

[32]  Jean-Jacques Marigo,et al.  Un modèle de matériau microfissuré pour les bétons et les roches , 1986 .

[33]  Adnan Ibrahimbegovic,et al.  Classical plasticity and viscoplasticity models reformulated: theoretical basis and numerical implementation , 1998 .

[34]  François Hild,et al.  A damage model for the dynamic fragmentation of brittle solids , 2000 .

[35]  Comportement du béton en dynamique rapide , 1997 .

[36]  P. Perzyna Fundamental Problems in Viscoplasticity , 1966 .

[37]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[38]  Gilles Pijaudier-Cabot,et al.  Experimental analysis of compaction of concrete and mortar , 2001 .

[39]  M. Kachanov,et al.  A microcrack model of rock inelasticity part I: Frictional sliding on microcracks , 1982 .

[40]  Rodney Hill,et al.  Aspects of Invariance in Solid Mechanics , 1979 .

[41]  J.G.M. van Mier,et al.  Strain-softening of concrete under multiaxial loading conditions , 1984 .

[42]  Jean-Michel Torrenti,et al.  Comportement multiaxial du béton : aspects expérimentaux et modélisation , 1987 .

[43]  P. Bailly Une modélisation d'un matériau fragile avec prise en compte d'effets dynamiques , 1994 .

[44]  A. Hillerborg The theoretical basis of a method to determine the fracture energyGF of concrete , 1985 .

[45]  Djimédo Kondo,et al.  Une analyse micromécanique 3-D de l'endommagement par mésofissuration , 2001 .

[46]  Jean-Louis Chaboche,et al.  Cyclic Viscoplastic Constitutive Equations, Part I: A Thermodynamically Consistent Formulation , 1993 .

[47]  Jaroslaw Knap,et al.  Brittle-Ductile Transition in Porous Rocks by Cap Model , 1996 .

[48]  L. J. Sluys,et al.  Wave propagation, localisation and dispersion in softening solids : proefschrift , 1992 .

[49]  Fabrice Gatuingt,et al.  Prévision de la rupture des ouvrages en béton sollicités en dynamique rapide , 1999 .

[50]  J. Sercombe Modélisation du comportement du béton en dynamique rapide , 1998 .

[51]  Viggo Tvergaard,et al.  An analysis of ductile rupture in notched bars , 1984 .