Identification of partial differential equation models for a class of multiscale spatio-temporal dynamical systems

In this article, the identification of a class of multiscale spatio-temporal dynamical systems, which incorporate multiple spatial scales, from observations is studied. The proposed approach is a combination of Adams integration and an orthogonal least squares algorithm, in which the multiscale operators are expanded, using polynomials as basis functions, and the spatial derivatives are estimated by finite difference methods. The coefficients of the polynomials can vary with respect to the space domain to represent the feature of multiple scales involved in the system dynamics and are approximated using a B-spline wavelet multi-resolution analysis. The resulting identified models of the spatio-temporal evolution form a system of partial differential equations with different spatial scales. Examples are provided to demonstrate the efficiency of the proposed method.

[1]  Michèle Basseville,et al.  Modeling and estimation of multiresolution stochastic processes , 1992, IEEE Trans. Inf. Theory.

[2]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[3]  Igor Grabec,et al.  Statistical Approach to Modeling of Spatiotemporal Dynamics , 2001, Int. J. Bifurc. Chaos.

[4]  Parlitz,et al.  Prediction of spatiotemporal time series based on reconstructed local states , 2000, Physical review letters.

[5]  R. Solé,et al.  Spatial Forecasting: Detecting Determinism from Single Snapshots , 2002, Int. J. Bifurc. Chaos.

[6]  Joan Cabestany,et al.  Biological and Artificial Computation: From Neuroscience to Technology , 1997, Lecture Notes in Computer Science.

[7]  E. Vanden-Eijnden,et al.  The Heterogeneous Multiscale Method: A Review , 2007 .

[8]  Stephen A. Billings,et al.  Identification of finite dimensional models of infinite dimensional dynamical systems , 2002, Autom..

[9]  John M. Niedzwecki,et al.  System identification of distributed-parameter marine riser models , 2003 .

[10]  Stephen A. Billings,et al.  Identification of Partial Differential Equation Models for Continuous Spatio-Temporal Dynamical Systems , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[11]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[12]  Stephen A. Billings,et al.  Identification of coupled map lattice models of deterministic distributed parameter systems , 2002, Int. J. Syst. Sci..

[13]  Gordon A. Phillipson Identification of distributed systems , 1971 .

[14]  M. J. Bunner,et al.  Identification of continuous, spatiotemporal systems. , 1998 .

[15]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .

[16]  Stephen A. Billings,et al.  Identification of Excitable Media Using Cellular Automata Models , 2007, Int. J. Bifurc. Chaos.

[17]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[18]  Curtis C. Travis,et al.  Parameter identification of distributed parameter systems , 1985 .

[19]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[20]  Stephen A. Billings,et al.  FINITE ELEMENT GALERKIN MODELS AND IDENTIFIED FINITE ELEMENT MODELS - A COMPARATIVE STUDY. , 2002 .

[21]  P. Bao,et al.  The discrete Kalman filtering of a class of dynamic multiscale systems , 2002 .

[22]  Kenneth C. Chou,et al.  Maximum likelihood identification of multiscale stochastic models using the wavelet transform and the EM algorithm , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[23]  Stephen A. Billings,et al.  Direct parameter identification of distributed parameter systems , 2000, Int. J. Syst. Sci..

[24]  Dzu K. Le Multiscale system identification and estimation , 1995, Optics & Photonics.

[25]  L. Jetto,et al.  Accurate derivative estimation from noisy data: a state-space approach , 1989 .

[26]  Stephen A. Billings,et al.  IDENTIFICATION OF FINITE-DIMENSIONAL MODELS FOR DISTRIBUTED-PARAMETER SYSTEMS , 2002 .

[27]  Igor Grabec,et al.  Continuation of Chaotic Fields by RBFNN , 1997, IWANN.

[28]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[29]  Alan S. Willsky,et al.  Multiscale Autoregressive Models and Wavelets , 1999, IEEE Trans. Inf. Theory.