Silicon photonic processor of two-qubit entangling quantum logic

Entanglement is a fundamental property of quantum mechanics, and is a primary resource in quantum information systems. Its manipulation remains a central challenge in the development of quantum technology. In this work, we demonstrate a device which can generate, manipulate, and analyse two-qubit entangled states, using miniature and mass-manufacturable silicon photonics. By combining four photon-pair sources with a reconfigurable six-mode interferometer, embedding a switchable entangling gate, we generate two-qubit entangled states, manipulate their entanglement, and analyse them, all in the same silicon chip. Using quantum state tomography, we show how our source can produce a range of entangled and separable states, and how our switchable controlled-Z gate operates on them, entangling them or making them separable depending on its configuration.

[1]  Philip H. W. Leong,et al.  Active temporal multiplexing of indistinguishable heralded single photons , 2015, Nature Communications.

[2]  Hiroshi Fukuda,et al.  Indistinguishable photon pair generation using two independent silicon wire waveguides , 2011 .

[3]  S. Paesani,et al.  Experimental Bayesian Quantum Phase Estimation on a Silicon Photonic Chip. , 2017, Physical review letters.

[4]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[5]  Yunhong Ding,et al.  Ultra-high-efficiency apodized grating coupler using a fully etched photonic crystal , 2013, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[6]  Fabio Sciarrino,et al.  Towards quantum supremacy with lossy scattershot boson sampling , 2016, 1610.02279.

[7]  A. Sergienko,et al.  High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits , 2011, Nature communications.

[8]  T.D. Vo,et al.  Integrated spatial multiplexing of heralded single-photon sources , 2013, Nature communications.

[9]  S. Massar,et al.  Silicon-on-insulator integrated source of polarization-entangled photons. , 2013, Optics letters.

[10]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[11]  Shigehito Miki,et al.  High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler. , 2013, Optics express.

[12]  Dirk Englund,et al.  On-chip detection of non-classical light by scalable integration of single-photon detectors , 2014, Nature Communications.

[13]  J. O'Brien,et al.  Witnessing eigenstates for quantum simulation of Hamiltonian spectra , 2016, Science Advances.

[14]  Peter Karkus,et al.  On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform. , 2014, Optics express.

[15]  Giuseppe Vallone,et al.  Polarization entangled state measurement on a chip , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[16]  P. Horodecki,et al.  Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network , 2009, 0906.1305.

[17]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Masaya Notomi,et al.  Entangled photons from on-chip slow light , 2014, Scientific Reports.

[19]  Jeremy L O'Brien,et al.  Quantum simulation of Hamiltonian spectra on a silicon chip , 2016 .

[20]  Marco Barbieri,et al.  Quantum teleportation on a photonic chip , 2014, Nature Photonics.

[21]  James C. Gates,et al.  Chip-based array of near-identical, pure, heralded single-photon sources , 2016, 1603.06984.

[22]  F. Schmidt-Kaler,et al.  Bell states of atoms with ultralong lifetimes and their tomographic state analysis. , 2004, Physical review letters.

[23]  Jun Chen,et al.  Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference , 2007 .

[24]  Vincenzo Savona,et al.  A compact, integrated silicon device for the generation of spectrally-filtered, pair-correlated photons , 2016 .

[25]  J. O'Brien,et al.  Qubit entanglement between ring-resonator photon-pair sources on a silicon chip , 2015, Nature Communications.

[26]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[27]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[28]  Roberto Morandotti,et al.  Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip , 2015, Nature Communications.

[29]  M. Sorel,et al.  Ultra-low power generation of twin photons in a compact silicon ring resonator. , 2012, Optics express.

[30]  Guo-Qiang Lo,et al.  Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip. , 2013, Optics express.

[31]  Jeremy L O'Brien,et al.  High-extinction ratio integrated photonic filters for silicon quantum photonics. , 2017, Optics letters.

[32]  W. Munro,et al.  A monolithically integrated polarization entangled photon pair source on a silicon chip , 2012, Scientific Reports.

[33]  N. K. Langford,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2002 .

[34]  N. Harris,et al.  Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems , 2014, 1409.8215.

[35]  Fabio Sciarrino,et al.  Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining , 2015, Light: Science & Applications.

[36]  W. Vogel,et al.  The Schmidt number as a universal entanglement measure , 2009, 0908.3974.

[37]  J. C. Loredo,et al.  Active demultiplexing of single photons from a solid-state source (Laser Photonics Rev. 11(3)/2017) , 2017 .

[38]  Tommaso Lunghi,et al.  Quantum photonics at telecom wavelengths based on lithium niobate waveguides , 2016, 1608.01100.

[39]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[40]  R. Morandotti,et al.  New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics , 2013, Nature Photonics.

[41]  Sébastien Tanzilli,et al.  On-chip generation of heralded photon-number states , 2016, Scientific Reports.

[42]  N. Harris,et al.  Efficient, compact and low loss thermo-optic phase shifter in silicon. , 2014, Optics express.

[43]  Bahram Jalali,et al.  Integrated optical directional couplers in silicon-on-insulator , 1995 .

[44]  C. M. Natarajan,et al.  On-chip quantum interference between silicon photon-pair sources , 2013, Nature Photonics.

[45]  J L O'Brien,et al.  60  dB high-extinction auto-configured Mach-Zehnder interferometer. , 2016, Optics letters.

[46]  Qianfan Xu,et al.  Silicon microring resonators with 1.5-μm radius , 2008 .

[47]  V. Quiring,et al.  A two-channel, spectrally degenerate polarization entangled source on chip , 2016, 1604.03430.

[48]  S. Mookherjea,et al.  Photon pair generation from compact silicon microring resonators using microwatt-level pump powers. , 2015, Optics express.

[49]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[50]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[51]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[52]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[53]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[54]  M. Thompson,et al.  Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit , 2012 .

[55]  B. Eggleton,et al.  Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides , 2016, 1602.07915.

[56]  Omar E. Gamel,et al.  Measures of quantum state purity and classical degree of polarization , 2012, 1303.6696.

[57]  I. Sagnes,et al.  Active demultiplexing of single photons from a solid‐state source , 2016, 1611.02294.

[58]  J. O'Brien,et al.  Universal linear optics , 2015, Science.