Closed-form Analysis of Age of Information in Energy Harvesting Network

We consider a system in which status updates are generated by a source node at will and are sent to a destination through a wireless channel. The energy consumption of transmission is linearly proportional to service time, which we modeled to be exponentially distributed. Due to the capacity limit of the battery and the vacancy of energy arrivals before the battery runs out, some of the status updates might possibly fail. We analyzed the Age of Information(AoI) for such a system, and show the efficacy of the system parameters on the AoI.

[1]  Jing Yang,et al.  Optimal status updating for an energy harvesting sensor with a noisy channel , 2018, IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[2]  Ness B. Shroff,et al.  Optimizing data freshness, throughput, and delay in multi-server information-update systems , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[3]  Roy D. Yates,et al.  Update or wait: How to keep your data fresh , 2016, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications.

[4]  Sennur Ulukus,et al.  Age-Minimal Transmission in Energy Harvesting Two-Hop Networks , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[5]  Roy D. Yates,et al.  Real-time status: How often should one update? , 2012, 2012 Proceedings IEEE INFOCOM.

[6]  Elif Uysal-Biyikoglu,et al.  Optimal Sampling and Remote Estimation of the Wiener Process over a Channel with Random Delay , 2017, ArXiv.

[7]  Anthony Ephremides,et al.  Age of information under random updates , 2013, 2013 IEEE International Symposium on Information Theory.

[8]  Shahab Farazi,et al.  Age of Information in Energy Harvesting Status Update Systems: When to Preempt in Service? , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).