Construction of Genetic Linkage Maps in Multiparental Populations

Construction of genetic linkage maps has become a routine step for mapping quantitative trait loci (QTL), particularly in animal and plant breeding populations. Many multiparental populations have recently been produced to increase genetic diversity and QTL mapping resolution. However, few software packages are available for map construction in these populations. In this paper, we build a general framework for the construction of genetic linkage maps from genotypic data in diploid populations, including bi- and multiparental populations, cross-pollinated (CP) populations, and breeding pedigrees. The framework is implemented as an automatic pipeline called magicMap, where the maximum multilocus likelihood approach utilizes genotypic information efficiently. We evaluate magicMap by extensive simulations and eight real datasets: one biparental, one CP, four multiparent advanced generation intercross (MAGIC), and two nested association mapping (NAM) populations, the number of markers ranging from a few hundred to tens of thousands. Not only is magicMap the only software capable of accommodating all of these designs, it is more accurate and robust to missing genotypes and genotyping errors than commonly used packages.

[1]  Pjotr Prins,et al.  R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations , 2018, Genetics.

[2]  F. V. van Eeuwijk,et al.  Recursive Algorithms for Modeling Genomic Ancestral Origins in a Fixed Pedigree , 2018, G3: Genes, Genomes, Genetics.

[3]  F. V. van Eeuwijk,et al.  Accurate Genotype Imputation in Multiparental Populations from Low-Coverage Sequence , 2018, Genetics.

[4]  Pasi Rastas,et al.  Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data , 2017, Bioinform..

[5]  M. Koornneef,et al.  Fine mapping of a major QTL for awn length in barley using a multiparent mapping population , 2016, Theoretical and Applied Genetics.

[6]  Choongrak Kim,et al.  Uncovering multiloci-ordering by algebraic property of Laplacian matrix and its Fiedler vector , 2016, Bioinform..

[7]  J. Schmutz,et al.  Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01 , 2016, BMC Genomics.

[8]  Pasi Rastas,et al.  Construction of Ultradense Linkage Maps with Lep-MAP2: Stickleback F2 Recombinant Crosses as an Example , 2015, Genome biology and evolution.

[9]  Frederik Coppens,et al.  Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays , 2015, Genome Biology.

[10]  Lance Cadle-Davidson,et al.  Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine , 2015, PloS one.

[11]  Janna L. Fierst,et al.  Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools , 2015, Front. Genet..

[12]  Martin P. Boer,et al.  Reconstruction of Genome Ancestry Blocks in Multiparental Populations , 2015, Genetics.

[13]  M. Causse,et al.  Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. , 2015, Plant biotechnology journal.

[14]  H. Leung,et al.  MAGIC populations in crops: current status and future prospects , 2015, Theoretical and Applied Genetics.

[15]  Chaozhi Zheng,et al.  Modeling X-Linked Ancestral Origins in Multiparental Populations , 2015, G3: Genes, Genomes, Genetics.

[16]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[17]  N. Ranc,et al.  Linkage Disequilibrium with Linkage Analysis of Multiline Crosses Reveals Different Multiallelic QTL for Hybrid Performance in the Flint and Dent Heterotic Groups of Maize , 2014, Genetics.

[18]  F. V. van Eeuwijk,et al.  A General Modeling Framework for Genome Ancestral Origins in Multiparental Populations , 2014, Genetics.

[19]  Riccardo Velasco,et al.  Fast and Cost-Effective Genetic Mapping in Apple Using Next-Generation Sequencing , 2014, G3: Genes, Genomes, Genetics.

[20]  Xiaowu Wang,et al.  Construction and Analysis of High-Density Linkage Map Using High-Throughput Sequencing Data , 2014, PloS one.

[21]  Petri Auvinen,et al.  Lep-MAP: fast and accurate linkage map construction for large SNP datasets , 2013, Bioinform..

[22]  P. Langridge,et al.  A Sequence-Ready Physical Map of Barley Anchored Genetically by Two Million Single-Nucleotide Polymorphisms1[W][OPEN] , 2013, Plant Physiology.

[23]  A. Charcosset,et al.  Intraspecific variation of recombination rate in maize , 2013, Genome Biology.

[24]  M. Ganal,et al.  Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato , 2012, PloS one.

[25]  M. Lorieux MapDisto: fast and efficient computation of genetic linkage maps , 2012, Molecular Breeding.

[26]  O. Martin,et al.  A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome , 2011, PloS one.

[27]  Roger E Bumgarner,et al.  The genome of the domesticated apple (Malus × domestica Borkh.) , 2010, Nature Genetics.

[28]  Jo L. Dicks,et al.  THREaD Mapper Studio: a novel, visual web server for the estimation of genetic linkage maps , 2010, Nucleic Acids Res..

[29]  Chunfa Tong,et al.  A hidden Markov model approach to multilocus linkage analysis in a full-sib family , 2010, Tree Genetics & Genomes.

[30]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[31]  Peter J. Bradbury,et al.  Genetic Properties of the Maize Nested Association Mapping Population , 2009, Science.

[32]  R. Mott,et al.  A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana , 2009, PLoS genetics.

[33]  David M. W. Powers,et al.  Characterization and evaluation of similarity measures for pairs of clusterings , 2009, Knowledge and Information Systems.

[34]  Stefano Lonardi,et al.  Efficient and Accurate Construction of Genetic Linkage Maps from the Minimum Spanning Tree of a Graph , 2008, PLoS genetics.

[35]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[36]  Anete P. Souza,et al.  OneMap: software for genetic mapping in outcrossing species. , 2007, Hereditas.

[37]  Seishi Ninomiya,et al.  AntMap: Constructing Genetic Linkage Maps Using an Ant Colony Optimization Algorithm , 2006 .

[38]  R W Doerge,et al.  High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. , 2006, Genome research.

[39]  Richard G. F. Visser,et al.  RECORD: a novel method for ordering loci on a genetic linkage map , 2005, Theoretical and Applied Genetics.

[40]  Richard G. F. Visser,et al.  RECORD: a novel method for ordering loci on a genetic linkage map , 2005, Theoretical and Applied Genetics.

[41]  Chris H. Q. Ding,et al.  Linearized cluster assignment via spectral ordering , 2004, ICML.

[42]  Hao Wu,et al.  R/qtl: QTL Mapping in Experimental Crosses , 2003, Bioinform..

[43]  C. Hackett,et al.  Constructing linkage maps in autotetraploid species using simulated annealing , 2003, Theoretical and Applied Genetics.

[44]  J. Jansen,et al.  Constructing dense genetic linkage maps , 2001, Theoretical and Applied Genetics.

[45]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[46]  T. Ellis,et al.  NEIGHBOUR MAPPING AS A METHOD FOR ORDERING GENETIC MARKERS , 1997 .

[47]  P. Stam,et al.  Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. , 1993 .

[48]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[49]  Eric S. Lander,et al.  Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms , 1988, Nature.

[50]  M. Daly,et al.  MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. , 1987, Genomics.

[51]  E. Lander,et al.  Construction of multilocus genetic linkage maps in humans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[53]  Steve Crooks,et al.  Documentation for CRI-MAP, version 2 , 2018 .

[54]  David B. Dunson,et al.  Bayesian data analysis, third edition , 2013 .

[55]  A. George,et al.  Bioinformatics Applications Note Genetics and Population Analysis R/mpmap: a Computational Platform for the Genetic Analysis of Multiparent Recombinant Inbred Lines , 2022 .

[56]  J. V. van Ooijen Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. , 2011, Genetics research.

[57]  J. Ooijen,et al.  JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations , 2006 .

[58]  C. Hackett,et al.  Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps , 2003, Heredity.

[59]  G. Reinelt The traveling salesman: computational solutions for TSP applications , 1994 .

[60]  M. Fiedler Laplacian of graphs and algebraic connectivity , 1989 .

[61]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[62]  Thomas Schiex,et al.  Car Agene: Constructing and Joining Maximum Likelihood Genetic Maps* , 2022 .