Existence and Stability of Invariant Cones in 3-Dim Homogeneous Piecewise Linear Systems with Two Zones

We mainly investigate the existence, stability and number of invariant cones in 3-dim homogeneous piecewise linear systems with two zones separated by a plane containing the 1-dim invariant manifold of each linear subsystem. By transforming the system into a proper form with the 1-dim invariant manifolds on the separation plane either coincident or perpendicular, we obtain complete results on the existence, stability and number of invariant cones and show that the maximum number of invariant cones is two. The explicit parameter relations obtained here contribute to understanding and investigating bifurcation phenomena occurring in nonsmooth dynamical systems.

[1]  Xiao-Song Yang,et al.  On the Number of Invariant Cones and Existence of Periodic Orbits in 3-dim Discontinuous Piecewise Linear Systems , 2016, Int. J. Bifurc. Chaos.

[2]  Marco Storace,et al.  A hysteresis‐based chaotic circuit: dynamics and applications , 1999 .

[3]  Enrique Ponce,et al.  LIMIT CYCLE BIFURCATION FROM CENTER IN SYMMETRIC PIECEWISE-LINEAR SYSTEMS , 1999 .

[4]  Xiao-Song Yang,et al.  Generalized Hopf bifurcation in a class of planar switched systems , 2011 .

[5]  H. A. Hosham,et al.  Invariant manifolds for nonsmooth systems , 2012 .

[6]  Michael Peter Kennedy,et al.  Nonsmooth bifurcations in a piecewise linear model of the Colpitts Oscillator , 2000 .

[7]  E. Freire,et al.  Invariant manifolds of periodic orbits for piecewise linear three‐dimensional systems , 2004 .

[8]  Tassilo Küpper,et al.  Invariant cones for non-smooth dynamical systems , 2008, Math. Comput. Simul..

[9]  H. A. Hosham,et al.  Reduction to invariant cones for non-smooth systems , 2011, Math. Comput. Simul..

[10]  Qingdu Li,et al.  Multiple-scrolls chaotic attractor and circuit implementation , 2003 .

[11]  Enrique Ponce,et al.  Bifurcation of Invariant cones in Piecewise Linear Homogeneous Systems , 2005, Int. J. Bifurc. Chaos.

[12]  V. CARMONA,et al.  Limit Cycle bifurcation in 3D Continuous Piecewise Linear Systems with Two Zones: Application to Chua's Circuit , 2005, Int. J. Bifurc. Chaos.

[13]  Stephen Barnett,et al.  Introduction to Mathematical Control Theory , 1975 .

[14]  E. Freire,et al.  PERIODIC ORBITS AND INVARIANT CONES IN THREE-DIMENSIONAL PIECEWISE LINEAR SYSTEMS , 2014 .

[15]  Stephen Coombes,et al.  Nonsmooth dynamics in spiking neuron models , 2012 .

[16]  Qingdu Li,et al.  Chaos in three-dimensional hybrid systems and design of chaos generators , 2012 .

[17]  E. Freire,et al.  Saddle–node bifurcation of invariant cones in 3D piecewise linear systems , 2012 .

[18]  Yuri A. Kuznetsov,et al.  One-Parameter bifurcations in Planar Filippov Systems , 2003, Int. J. Bifurc. Chaos.

[19]  Enrique Ponce,et al.  Bifurcation Sets of Continuous Piecewise Linear Systems with Two Zones , 1998 .

[20]  Qingdu Li,et al.  Chaos generator via Wien-bridge oscillator , 2002 .

[21]  Xiao-Song Yang,et al.  Generalized Hopf bifurcation emerged from a corner in general planar piecewise smooth systems , 2012 .