On turbo encodedBicm

The superior performance of the binary turbo codes has stimulated vigorous efforts in generating bandwidth efficient modulation schemes adhering to these codes. Several approaches for the integration of turbo-coding and modulation have emerged in recent years but none seem to dominate. In the bit interleaved coded modulation (Bicm) scheme is used to achieve high bandwidth and power efficiency, while separating coding and modulation. As is now well known, theBicm scheme achieves capacity remarkably close to the constellation channel capacity. The turbo-Bicm scheme enjoys high coding diversity (well suited for fading channels), high flexibility as well as design and implementation simplicity, while maintaining good power efficiency. The system comprises one standard turbo code, an interleaver, a mapper and a modulator at the transmitter, corresponding to a demodulator, a de-interleaver and a turbo decoder at the receiver. A modified system, which improves on performance by incorporating the demodulation in the iterative decoding procedure, is investigated, and some performance gain is demonstrated, especially for low rate codes. Information theoretic arguments for the somewhat minor potential improvement in performance are detailed. The preferred mapper and interleaver for this system are considered. Extending previous works, for higher level modulations, we analyze a system including a convolutional code, an interleaver, a differential encoder (De), a mapper and a modulator at the transmitter. As for theBpsk modulation, the serial concatenation of a convolutional code withDe outperforms the single convolutional code. The serial concatenation withDe approach is analyzed also for a turbo code, where it is found to fail in achieving performance improvement. Several structures for the serial concatenation withDe are examined. These results are substantiated through the ‘spectral thinning’ phenomena of the weight distribution of the convolutional and turbocodes.RésuméLes bonnes performances des turbo codes binaires ont suscité de gros efforts de recherche pour associer ces codes aux modulations à grande efficacité spectrale. Plusieurs approches ont été proposées durant ces dernieres années, mais aucune ne semble s’imposer. Dans cet article le principe de la modulation codée avec entrelacement de bits (Bicm) est utilisé pour atteindre une efficacité spectrale élevée et de forts rendements en puissance, tout en séparant le codage et la modulation. Le systèmeBicm, c’est maintenant bien connu, permet d’atteindre une bonne efficacité spectrale. Le système turbo-Bicm apporte une importante diversité de codage (bien adaptée aux canaux à évanouissement), une grande flexibilité aussi bien en ce qui concerne la simplicité de conception et d’implantation que du rendement de puissance. Le systéme comprend, du coté émetteur, un turbo code standard, un entrelaceur, un codeur binaire à symbole et un modulateur. Le récepteur est constitué d’un démodulateur, d’un désentrelaceur et d’un turbo-décodeur. Un systeme modifié permettant d’améliorer les performances en intégrant la démodulation dans le processus de décodage itératif, est décrit. L’amélioration des performances est démontrée, en particulier dans le cas des codes à faible rendement. Des propositions théoriques conduisant à des améliorations mineures potentielles des performances sont détaillées. Développant de précédents travaux sur les modulations de haul niveau, un système incluant à l’émission un code convolutif, un entrelaceur, un codeur différentiel, un codeur binaire à symbole et un modulateur est analysé. Pour la modulationMdp2, la concaténation série d’un code convolutif et d’un codeur différentiel conduit à de meilleures performances qu’un simple code convolutif. La concaténation série basée sur un codage différentiel est analysée égalemenl pour un turbo code. Dans ce cas, il n’y a pas d’amélioration des performances. Plusieurs structures pour la concatenation série avec un codeur différentiel sont étudiées. Les résultats sont justifiés par les phénomènes de « rétrécissement spectral » de la distribution des poids dans les codes convolutifs et les turbo codes.

[1]  P. Robertson,et al.  Coded modulation scheme employing turbo codes , 1995 .

[2]  E. Zehavi,et al.  A pragmatic approach to trellis-coded modulation , 1989, IEEE Communications Magazine.

[3]  S. Shamai,et al.  Iterative decoding of coded and interleaved noncoherent multiple symbol detected DPSK , 1997 .

[4]  Thomas Woerz,et al.  Decoding of M-PSK-Multilevel Codes , 1993, Eur. Trans. Telecommun..

[5]  Ephraim Zehavi,et al.  8-PSK trellis codes for a Rayleigh channel , 1992, IEEE Trans. Commun..

[6]  Michael J. Gertsman,et al.  Symbol-by-symbol MAP demodulation of CPM and PSK signals on Rayleigh flat-fading channels , 1997, IEEE Trans. Commun..

[7]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[8]  R. McEliece,et al.  Effective free distance of turbo codes , 1996 .

[9]  Yuri V. Svirid Weight distributions and bounds for turbo-codes , 1995, Eur. Trans. Telecommun..

[10]  Xiaodong Li,et al.  Bit-interleaved coded modulation with iterative decoding , 1997, IEEE Communications Letters.

[11]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[12]  P. Schramm,et al.  Comparison of coded modulation schemes for the AWGN and the Rayleigh fading channel , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[13]  Dariush Divsalar,et al.  Serial and Hybrid Concatenated Codes with Applications , 1997 .

[14]  Patrick Robertson,et al.  Bandwidth-Efficient Turbo Trellis-Coded Modulation Using Punctured Component Codes , 1998, IEEE J. Sel. Areas Commun..

[15]  Sergio Benedetto,et al.  Iterative decoding of serially concatenated convolutional codes , 1996 .

[16]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[17]  F. Pollara,et al.  Parallel concatenated trellis coded modulation , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[18]  J. Hagenauer,et al.  Iterative decoding for multilevel codes using reliability information , 1992, [Conference Record] GLOBECOM '92 - Communications for Global Users: IEEE.

[19]  A. Glavieux,et al.  Turbo-codes and high spectral efficiency modulation , 1994, Proceedings of ICC/SUPERCOMM'94 - 1994 International Conference on Communications.

[20]  Gerard Battail On Random-Like Codes , 1995, Information Theory and Applications.

[21]  Daniel J. Costello,et al.  A distance spectrum interpretation of turbo codes , 1996, IEEE Trans. Inf. Theory.

[22]  Johannes B. Huber,et al.  Power and bandwidth efficient digital communication using turbo codes in multilevel codes , 1995, Eur. Trans. Telecommun..

[23]  Dariush Divsalar,et al.  Bandwidth efficient parallel concatenated coding schemes , 1995 .

[24]  Patrick Robertson,et al.  A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[25]  P. Robertson,et al.  A Novel Coded Modulation Scheme Employing Turbo Codes. , 1995 .

[26]  S. S. Pietrobon,et al.  A Simplification of the Modified Bahl Decoding Algorithm for Systematic Convolutional Codes , 1994 .

[27]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[28]  Shlomo Shamai,et al.  Performance analysis of a multilevel coded modulation system , 1994, IEEE Trans. Commun..

[29]  P. Robertson,et al.  A novel bandwidth efficient coding scheme employing turbo codes , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[30]  Shlomo Shamai,et al.  Improved upper bounds on the performance of parallel and serial concatenated turbo codes via their ensemble distance spectrum , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[31]  U. Wachsmann,et al.  Capacities of equivalent channels in multilevel coding schemes , 1994 .

[32]  Peter Adam Hoeher,et al.  Separable MAP "filters" for the decoding of product and concatenated codes , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[33]  Hideki Imai,et al.  A new multilevel coding method using error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[34]  John G. Proakis,et al.  Digital Communications , 1983 .

[35]  P. Schramm Multilevel coding with independent decoding on levels for efficient communication on static and interleaved fading channels , 1997, Proceedings of 8th International Symposium on Personal, Indoor and Mobile Radio Communications - PIMRC '97.

[36]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[37]  Robert F. H. Fischer,et al.  Multilevel coding: aspects from information theory , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[38]  X. Li Bit-interleaved coded modulation with iterative decoding using soft feedback , 1998 .

[39]  S. Dolinar,et al.  Weight distributions for turbo codes using random and nonrandom permutations , 1995 .