Computational sustainability

Computer and information scientists join forces with other fields to help solve societal and environmental challenges facing humanity, in pursuit of a sustainable future.

[1]  R. Cassen Our common future: report of the World Commission on Environment and Development , 1987 .

[2]  Michael Luck,et al.  Multi-Agent Systems and Applications , 2001, Lecture Notes in Computer Science.

[3]  Sarit Kraus,et al.  Automated Negotiation and Decision Making in Multiagent Environments , 2001, EASSS.

[4]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[5]  C. Gomes Computational Sustainability: Computational methods for a sustainable environment, economy, and society , 2009 .

[6]  F. Chapin,et al.  Planetary boundaries: Exploring the safe operating space for humanity , 2009 .

[7]  D. Fink,et al.  Spatiotemporal exploratory models for broad-scale survey data. , 2010, Ecological applications : a publication of the Ecological Society of America.

[8]  Computational Sustainability , 2011, IDA.

[9]  Thomas G. Dietterich,et al.  Collective Graphical Models , 2011, NIPS.

[10]  Matthew L. Ginsberg,et al.  Green Driver: AI in a Microcosm , 2011, AAAI.

[11]  Session,et al.  Resolution Adopted By The General Assembly , 1984, International Legal Materials.

[12]  J. Rockström,et al.  Policy: Sustainable development goals for people and planet , 2013, Nature.

[13]  Thomas G. Dietterich,et al.  Approximate Bayesian Inference for Reconstructing Velocities of Migrating Birds from Weather Radar , 2013, AAAI.

[14]  Cynthia Rudin,et al.  Machine learning for science and society , 2013, Machine Learning.

[15]  Thomas G. Dietterich,et al.  The eBird enterprise: An integrated approach to development and application of citizen science , 2014 .

[16]  Nick van de Giesen,et al.  The Trans‐African Hydro‐Meteorological Observatory (TAHMO) , 2014 .

[17]  James H. Faghmous,et al.  A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science , 2014, Big Data.

[18]  Thomas G. Dietterich,et al.  Letter to the Editor: Research Priorities for Robust and Beneficial Artificial Intelligence: An Open Letter , 2015, AI Mag..

[19]  Marshall J. Iliff,et al.  Can Observation Skills of Citizen Scientists Be Estimated Using Species Accumulation Curves? , 2015, PloS one.

[20]  Stuart J. Russell,et al.  Research Priorities for Robust and Beneficial Artificial Intelligence , 2015, AI Mag..

[21]  Stefano Ermon,et al.  Learning Large-Scale Dynamic Discrete Choice Models of Spatio-Temporal Preferences with Application to Migratory Pastoralism in East Africa , 2015, AAAI.

[22]  Alan Fern,et al.  Budgeted Optimization with Constrained Experiments , 2016, J. Artif. Intell. Res..

[23]  Sang Michael Xie,et al.  Combining satellite imagery and machine learning to predict poverty , 2016, Science.

[24]  Andreas Krause,et al.  Bayesian optimization for maximum power point tracking in photovoltaic power plants , 2016, 2016 European Control Conference (ECC).

[25]  Christian Bauckhage,et al.  Plant Phenotyping using Probabilistic Topic Models: Uncovering the Hyperspectral Language of Plants , 2016, Scientific Reports.

[26]  Carla P. Gomes,et al.  Avicaching: A Two Stage Game for Bias Reduction in Citizen Science , 2016, AAMAS.

[27]  Katharina Morik,et al.  Computational Sustainability , 2016, Studies in Computational Intelligence.

[28]  C. Barrett,et al.  Well-Being Dynamics and Poverty Traps , 2016 .

[29]  Douglas H. Fisher,et al.  Recent Advances in AI for Computational Sustainability , 2012, IEEE Intelligent Systems.

[30]  Claire A. Montgomery,et al.  Trade‐offs and efficiencies in optimal budget‐constrained multispecies corridor networks , 2017, Conservation biology : the journal of the Society for Conservation Biology.

[31]  Priya L. Donti,et al.  Task-based End-to-end Model Learning in Stochastic Optimization , 2017, NIPS.

[32]  Milind Tambe,et al.  Influence Maximization in the Field: The Arduous Journey from Emerging to Deployed Application , 2017, AAMAS.

[33]  Bo An,et al.  PAWS - A Deployed Game-Theoretic Application to Combat Poaching , 2017, AI Mag..

[34]  Nicholas E. Bruns,et al.  Dynamic conservation for migratory species , 2017, Science Advances.

[35]  Tao Sun,et al.  Differentially Private Learning of Undirected Graphical Models Using Collective Graphical Models , 2017, ICML.

[36]  Stefano Ermon,et al.  Best arm identification in multi-armed bandits with delayed feedback , 2018, AISTATS.

[37]  Keith H. Coble,et al.  Big Data in Agriculture: A Challenge for the Future , 2018 .

[38]  Carla P. Gomes,et al.  Efficiently Approximating the Pareto Frontier: Hydropower Dam Placement in the Amazon Basin , 2018, AAAI.

[39]  Di Chen,et al.  End-to-End Learning for the Deep Multivariate Probit Model , 2018, ICML.

[40]  Xiaoli Z. Fern,et al.  Dictionary Learning for Bioacoustics Monitoring with Applications to Species Classification , 2016, Journal of Signal Processing Systems.

[41]  Ronan Le Bras,et al.  Phase Mapper: Accelerating Materials Discovery with AI , 2018, AI Mag..

[42]  Warren B. Powell,et al.  SMART-Invest: a stochastic, dynamic planning for optimizing investments in wind, solar, and storage in the presence of fossil fuels. The case of the PJM electricity market , 2018 .

[43]  Warren B. Powell,et al.  A unified framework for stochastic optimization , 2019, Eur. J. Oper. Res..

[44]  Simulator-Defined Markov Decision Processes: A Case Study in Managing Bio-invasions , 2019, Artificial Intelligence and Conservation.