BOUNDARY CONTROL OF VIBRATION AND NOISE IN DISTRIBUTED PARAMETER SYSTEMS: AN OVERVIEW

Abstract In this paper, we present a technical overview of the design and analysis of active boundary controllers for distributed parameter (vibration and noise) systems. This presentation is done in the context of Lyapunov control design and stability analysis tools, which are commonly applied to non-linear finite dimensional systems. The main purpose of this presentation is to shed more light on this powerful control design philosophy for distributed parameter systems. The Lyapunov-based boundary control framework will be illustrated through three example systems—the transverse vibrating string, the acoustic noise duct, and the flexible rotor—each with an increasing level of complexity. To complement the theoretical content of the paper, the experimental implementation of the flexible rotor controller is also presented.

[1]  J. Baillieul,et al.  Stabilizability and stabilization of a rotating body-beam system with torque control , 1993, IEEE Trans. Autom. Control..

[2]  Vilmos Komornik,et al.  Rapid boundary stabilization of the wave equation , 1991 .

[3]  Fumin Zhang,et al.  Adaptive nonlinear boundary control of a flexible link robot arm , 1999, IEEE Trans. Robotics Autom..

[4]  J. U. Kim,et al.  Boundary control of the Timoshenko beam , 1987 .

[5]  N. U. Ahmed,et al.  Stabilization of a class of hybrid systems arising in flexible spacecraft , 1986 .

[6]  Darren M. Dawson,et al.  Lyapunov-Based Control of Mechanical Systems , 2000 .

[7]  Irena Lasiecka,et al.  Stabilization of wave and plate-like equations with nonlinear dissipation on the boundary , 1989 .

[8]  Gauthier Sallet,et al.  Boundary feedback stabilization of a rotating body-beam system , 1996, IEEE Trans. Autom. Control..

[9]  Darren M. Dawson,et al.  Backstepping boundary control for noise reduction in finite ducts , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[10]  M.S. de Queiroz,et al.  Boundary control of a rotating flexible body-beam system , 1997, Proceedings of the 1997 IEEE International Conference on Control Applications.

[11]  S. H. Hou,et al.  Feedback stabilization of a Timoshenko beam with an end mass , 1998 .

[12]  M. Balas MODAL CONTROL OF CERTAIN FLEXIBLE DYNAMIC SYSTEMS , 1978 .

[13]  J. Lagnese,et al.  Note on boundary stabilization of wave equations , 1988 .

[14]  Ö. Morgül Orientation and stabilization of a flexible beam attached to a rigid body: planar motion , 1991 .

[15]  Darren M. Dawson,et al.  Adaptive Vibration Control of an Axially Moving String , 1999 .

[16]  Christopher D. Rahn,et al.  Position control of a flexible cable gantry crane: theory and experiment , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[17]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[18]  C. D. Mote,et al.  Vibration Control of an Axially Moving String by Boundary Control , 1996 .

[19]  Brigitte d'Andréa-Novel,et al.  Feedback stabilization of a hybrid PDE-ODE system: Application to an overhead crane , 1994, Math. Control. Signals Syst..

[20]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[21]  Darren M. Dawson,et al.  Boundary control for a general class of nonlinear actuator-string systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[22]  C.Z. Xu,et al.  Boundary feedback stabilization of a rotating body-beam system , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[23]  Darren M. Dawson,et al.  Adaptive Boundary Control of Out-of-Plane Cable Vibration , 1998 .

[24]  M.S. de Queiroz,et al.  Boundary control of the Timoshenko beam with free-end mass/inertial dynamics , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[25]  D.M. Dawson,et al.  Boundary control of a two-dimensional flexible rotor , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[26]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[27]  Darren M. Dawson,et al.  QMotor 2.0-a real-time PC based control environment , 1999 .

[28]  Rong-Fong Fung,et al.  Exponential stabilization of an axially moving string by linear boundary feedback , 1999, Autom..

[29]  Jun Hu,et al.  Nonlinear Control of Electric Machinery , 1998 .

[30]  S. M. Shahruz,et al.  BOUNDARY CONTROL OF A NON-LINEAR STRING , 1996 .

[31]  Ö. Morgül Control and stabilization of a flexible beam attached to a rigid body , 1990 .

[32]  Ö. Morgül,et al.  On the stabilization of a cable with a tip mass , 1994, IEEE Trans. Autom. Control..

[33]  Youdan Kim,et al.  Introduction to Dynamics and Control of Flexible Structures , 1993 .

[34]  Ömer Morgül,et al.  On Boundary Control of Single Link Flexible Robot Arms , 1996 .

[35]  Ömer Morgül Control and stabilization of a rotating flexible structure , 1994, Autom..

[36]  Darren M. Dawson,et al.  Boundary control of a cantilevered flexible beam with point-mass dynamics at the free end , 1998 .

[37]  E. Zuazua,et al.  Uniform stabilization of the wave equation by nonlinear boundary feedback , 1990 .

[38]  C. Rahn,et al.  ACTIVE BOUNDARY CONTROL OF ELASTIC CABLES: THEORY AND EXPERIMENT , 1996 .

[39]  W. Gawronski Dynamics and control of structures : a modal approach , 1998 .

[40]  Ö. Morgül Dynamic boundary control of a Euler-Bernoulli beam , 1992 .