A sodium-channel mutation causes isolated cardiac conduction disease

[1]  P. C. Viswanathan,et al.  Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. , 2000, Circulation research.

[2]  P. Guicheney,et al.  Electrophysiological characterization of SCN5A mutations causing long QT (E1784K) and Brugada (R1512W and R1432G) syndromes. , 2000, Cardiovascular research.

[3]  S. Priori,et al.  Brugada syndrome and sudden cardiac death in children , 2000, The Lancet.

[4]  A. Wilde,et al.  A single Na(+) channel mutation causing both long-QT and Brugada syndromes. , 1999, Circulation research.

[5]  C Antzelevitch,et al.  Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. , 1999, Circulation research.

[6]  C. Antzelevitch,et al.  Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. , 1999, Circulation.

[7]  A. Wilde,et al.  Cardiac conduction defects associate with mutations in SCN5A , 1999, Nature Genetics.

[8]  P. C. Viswanathan,et al.  Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. , 1999, Circulation.

[9]  A. Wilde,et al.  "Brugada" syndrome: clinical data and suggested pathophysiological mechanism. , 1999, Circulation.

[10]  R. Hauer,et al.  Genetic and Molecular Basis of Cardiac Arrhythmias: Impact on Clinical Management , 2022 .

[11]  G. Breithardt,et al.  Genetic basis and molecular mechanism for idiopathic ventricular fibrillation , 1998, Nature.

[12]  J. Balser,et al.  Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. , 1998, Circulation.

[13]  E. Marbán,et al.  Suppression of Neuronal and Cardiac Transient Outward Currents by Viral Gene Transfer of Dominant-Negative Kv4.2 Constructs* , 1997, The Journal of Biological Chemistry.

[14]  T A Johnson,et al.  Electrophysiologic Changes in Ischemic Ventricular Myocardium: I. Influence of Ionic, Metabolic, and Energetic Changes , 1995, Journal of cardiovascular electrophysiology.

[15]  A. George,et al.  Molecular mechanism for an inherited cardiac arrhythmia , 1995, Nature.

[16]  Y Rudy,et al.  Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. , 1995, Circulation research.

[17]  Arthur J Moss,et al.  SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome , 1995, Cell.

[18]  C. Luo,et al.  A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. , 1994, Circulation research.

[19]  J. Brugada,et al.  Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. , 1992, Journal of the American College of Cardiology.

[20]  C. Antzelevitch,et al.  Sodium channel block produces opposite electrophysiological effects in canine ventricular epicardium and endocardium. , 1991, Circulation research.

[21]  H. Takeshima,et al.  Expression of functional sodium channels from cloned cDNA , 1986, Nature.

[22]  C. Stevens,et al.  Sodium channels need not open before they inactivate , 1981, Nature.

[23]  H. Fozzard,et al.  Influence of Extracellular K+ Concentration on Cable Properties and Excitability of Sheep Cardiac Purkinje Fibers , 1970, Circulation research.