Generalized optical flow in the scale space

Scale space is a natural way to handle multi-scale problem. Yang and Ma considered the correspondence between scales, and proposed optical flow in the scale space. In this paper, we generalized Yang and Ma's work to generic images. We first generalize the Horn-Schunck algorithm to multidimensional multichannel image sequence. Since the global smoothness constraint for regularization is no longer suitable in general cases, we introduce localized smoothness weight regularization. At last, we apply the proposed method in color image scale-space pullback, together with another localized smoothness trick considering flow density.

[1]  R Chellappa,et al.  Noise-resilient estimation of optical flow by use of overlapped basis functions. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[3]  Paul R. Schrater,et al.  Perceiving visual expansion without optic flow , 2001, Nature.

[4]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[5]  Naoya Ohta,et al.  Optical flow detection by color images , 1990 .

[6]  K. Lebart,et al.  Optical flow using textures , 2004, Pattern Recognit. Lett..

[7]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Song-Chun Zhu,et al.  Perceptual Scale Space and its Applications , 2005, ICCV.

[9]  Niklas Nordström,et al.  Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..

[10]  J. Deloache,et al.  Scale Errors Offer Evidence for a Perception-Action Dissociation Early in Life , 2004, Science.

[11]  M. Golubitsky,et al.  Stable mappings and their singularities , 1973 .

[12]  Songde Ma,et al.  Intrinsic multiscale representation using optical flow in the scale-space , 1999, IEEE Trans. Image Process..

[13]  Leonard Uhr,et al.  Layered "Recognition Cone" Networks That Preprocess, Classify, and Describe , 1972, IEEE Transactions on Computers.

[14]  Reinhard Klette,et al.  Quantitative color optical flow , 2002, Object recognition supported by user interaction for service robots.

[15]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[16]  Alan L. Yuille,et al.  Scaling Theorems for Zero Crossings , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Atsushi Imiya,et al.  Linear Scale-Space has First been Proposed in Japan , 1999, Journal of Mathematical Imaging and Vision.

[18]  B. Frost,et al.  Common reference frame for neural coding of translational and rotational optic flow , 1998, Nature.

[19]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[20]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[21]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[22]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[23]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[24]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.