The Nominal Categories Model

The nominal categories model (Bock, 1972), with its various specializations and extensions, comprises a large family of functions suitable for statistical description of individual qualitative behavior in response to identified stimuli. The models specify the probability of a person’s response in one of several mutually exclusive and exhaustive categories as a function of stimulus characteristics and person attributes. Bock’s nominal model, like Birnbaum’s (1968) binary item response model, is an elaboration of a primitive, formal model for choice between two alternatives.

[1]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[2]  R. Darrell Bock,et al.  Multilevel analysis of educational data , 1989 .

[3]  R. Darrell Bock,et al.  Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[4]  L. V. Jones,et al.  The measurement and prediction of judgment and choice. , 1970 .

[5]  L. Thurstone A law of comparative judgment. , 1994 .

[6]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[7]  G. Masters A rasch model for partial credit scoring , 1982 .

[8]  L. A. Goodman The Multivariate Analysis of Qualitative Data: Interactions among Multiple Classifications , 1970 .

[9]  S. Haberman Analysis of qualitative data , 1978 .

[10]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[11]  E. B. Andersen,et al.  CONDITIONAL INFERENCE FOR MULTIPLE‐CHOICE QUESTIONNAIRES , 1973 .

[12]  David Thissen,et al.  A response model for multiple choice items , 1984 .

[13]  E. Gumbel Bivariate Logistic Distributions , 1961 .

[14]  R. A. Fisher,et al.  Statistical Tables for Biological, Agricultural and Medical Research , 1956 .

[15]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm , 1981 .

[16]  Shelby J. Haberman,et al.  A Warning on the Use of Chi-Squared Statistics with Frequency Tables with Small Expected Cell Counts , 1988 .

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  R. D. Bock,et al.  Marginal maximum likelihood estimation of item parameters , 1982 .

[19]  William H. Press,et al.  Numerical recipes , 1990 .

[20]  N Mantel,et al.  Models for complex contingency tables and polychotomous dosage response curves. , 1966, Biometrics.

[21]  W. D. Ray Maximum likelihood estimation in small samples , 1977 .

[22]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[23]  D. Andrich A rating formulation for ordered response categories , 1978 .

[24]  R. D. Bock,et al.  Multivariate Statistical Methods in Behavioral Research , 1978 .

[25]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[26]  Shelby J. Haberman,et al.  Log-Linear Models and Frequency Tables with Small Expected Cell Counts , 1977 .

[27]  F. Samejima A General Model for Free Response Data. , 1972 .

[28]  E. Muraki A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .

[29]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[30]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .