High-Order Algorithms for Laplace–Beltrami Operators and Geometric Invariants over Curved Surfaces

The Laplace–Beltrami operators on curved surfaces play an essential role in the convergence analysis of the numerical simulations of some important geometric partial differential equations which involve this operator. In this note we shall combine the local tangential lifting method with the configuration equation to develop a new effective and convergent generalized finite difference method to approximate the Laplace–Beltrami operators acting on functions over discrete surfaces. The convergence rates of our algorithms of discrete Laplace–Beltrami operators over surfaces is $$O(r^n)$$O(rn), $$n \ge 1$$n≥1, where $$r$$r represents the size of the mesh of discretization of the surface. The problem of high-order accuracies will also be discussed and used to compute geometric invariants of the underlying surfaces. Some convergence tests and eigenvalue computations on the sphere, tori and a dumbbell are presented.

[1]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[2]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Xiangmin Jiao,et al.  High-Order Numerical Integration over Discrete Surfaces , 2012, SIAM J. Numer. Anal..

[4]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[5]  Jan S. Hesthaven,et al.  High-order accurate thin layer approximations for time-domain electromagnetics. Part I: General metal backed coatings , 2009, J. Comput. Appl. Math..

[6]  G. Sapiro,et al.  Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[7]  Einar M. Rønquist,et al.  High order numerical approximation of minimal surfaces , 2011, J. Comput. Phys..

[8]  Mehdi Dehghan,et al.  A high order finite volume element method for solving elliptic partial integro-differential equations , 2013 .

[9]  Jan S. Hesthaven,et al.  High-order accurate thin layer approximations for time-domain electromagnetics, Part II: Transmission layers , 2010, J. Comput. Appl. Math..

[10]  T. Banchoff,et al.  Differential Geometry of Curves and Surfaces , 2010 .

[11]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[12]  Rémi Abgrall,et al.  High Order Numerical Discretization for Hamilton–Jacobi Equations on Triangular Meshes , 2000, J. Sci. Comput..

[13]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[14]  Arthur W. Toga,et al.  Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[15]  Arthur W. Toga,et al.  Harmonic Surface Mapping with Laplace-Beltrami Eigenmaps , 2008, MICCAI.

[16]  Ludovic Goudenège,et al.  High Order Finite Element Calculations for the Cahn-Hilliard Equation , 2010, J. Sci. Comput..

[17]  I. Holopainen Riemannian Geometry , 1927, Nature.

[18]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[19]  Sheng-Gwo Chen,et al.  A new intrinsic numerical method for PDE on surfaces , 2009, Int. J. Comput. Math..

[20]  Sheng-Gwo Chen,et al.  Discrete Conservation Laws on Curved Surfaces , 2013, SIAM J. Sci. Comput..

[21]  Colin B. Macdonald,et al.  Solving eigenvalue problems on curved surfaces using the Closest Point Method , 2011, J. Comput. Phys..

[22]  Sheng-Gwo Chen,et al.  Estimating normal vectors and curvatures by centroid weights , 2004, Comput. Aided Geom. Des..

[23]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.