Effects of helium phase separation on the evolution of extrasolar giant planets

We build on recent new evolutionary models of Jupiter and Saturn and here extend our calculations to investigate the evolution of extrasolar giant planets of mass 0.15MJ-3.0MJ. Our inhomogeneous thermal history models show that the possible phase separation of helium from liquid metallic hydrogen in the deep interiors of these planets can lead to luminosities ~2 times greater than have been predicted by homogeneous models. For our chosen phase diagram this phase separation will begin to affect the planets' evolution at ~700 Myr for a 0.15MJ object and ~10 Gyr for a 3.0MJ object. We show how phase separation affects the luminosity, effective temperature, radii, and atmospheric helium mass fraction as a function of age for planets of various masses, with and without heavy element cores, and with and without the effect of modest stellar irradiation. This phase separation process will likely not affect giant planets within a few AU of their parent star, as these planets cool to their equilibrium temperatures, determined by stellar heating, before the onset of phase separation. We discuss the detectability of these objects and the likelihood that the energy provided by helium phase separation can change the timescales for formation and settling of ammonia clouds by several gigayears. We discuss how correctly incorporating stellar irradiation into giant planet atmosphere and albedo modeling may lead to a consistent evolutionary history for Jupiter and Saturn.

[1]  William B. Hubbard,et al.  Theory of Giant Planets , 2002 .

[2]  A. Chédin,et al.  The helium abundance of Jupiter from Voyager , 1980 .

[3]  Comparative evolution of Jupiter and Saturn , 1998, astro-ph/9812192.

[4]  Gordon A. H. Walker,et al.  Evidence for a Long-Period Planet Orbiting ϵ Eridani , 2000, astro-ph/0009423.

[5]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[6]  E. Salpeter On convection and gravitational layering in Jupiter and in stars of low mass. , 1973 .

[7]  E. Salpeter,et al.  The dynamics and helium distribution in hydrogen-helium fluid planets , 1977 .

[8]  MEASURING THE OBLATENESS AND ROTATION OF TRANSITING EXTRASOLAR GIANT PLANETS , 2003, astro-ph/0301156.

[9]  Weber,et al.  Measurements of the equation of state of deuterium at the fluid insulator-metal transition , 1998, Science.

[10]  Tristan Guillot,et al.  Evolution of "51 Pegasus b-like" planets , 2002 .

[11]  J. Pollack,et al.  A calculation of Saturn's gravitational contraction history , 1977 .

[12]  T. Guillot,et al.  Effect of Radiative Transport on the Evolution of Jupiter and Saturn , 1995 .

[13]  Adam Burrows,et al.  Theoretical Spectra and Atmospheres of Extrasolar Giant Planets , 2003 .

[14]  W. Hubbard Intrinsic luminosities of the Jovian planets , 1980 .

[15]  T. Guillot A COMPARISON OF THE INTERIORS OF JUPITER AND SATURN , 1999, astro-ph/9907402.

[16]  S. Seager,et al.  Constraining the Rotation Rate of Transiting Extrasolar Planets by Oblateness Measurements , 2002, astro-ph/0204225.

[17]  A. Burrows,et al.  Modeling the Formation of Clouds in Brown Dwarf Atmospheres , 2002, astro-ph/0205192.

[18]  E. Salpeter,et al.  The phase diagram and transport properties for hydrogen-helium fluid planets , 1977 .

[19]  W. Nellis,et al.  Minimum metallic conductivity of fluid hydrogen at 140 GPa (1.4 Mbar) , 1999 .

[20]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[21]  D. Stevenson Solubility of helium in metallic hydrogen , 1979 .

[22]  R. Paul Butler,et al.  Seven New Keck Planets Orbiting G and K Dwarfs , 2003 .

[23]  F. Allard,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003, astro-ph/0302293.

[24]  J. Drake,et al.  The fundamental parameters of the chromospherically active K2 dwarf Epsilon Eridani , 1993 .

[25]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[26]  A Planet at 5 AU around 55 Cancri , 2002, astro-ph/0207294.

[27]  J. Pollack,et al.  The effect of dense cores on the structure and evolution of Jupiter and Saturn , 1980 .

[28]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[29]  D. Gautier,et al.  The helium abundance of Saturn from Voyager measurements , 1984 .

[30]  D. Hunten,et al.  Helium in Jupiter's atmosphere: Results from the Galileo probe Helium Interferometer Experiment , 1998 .

[31]  W. Hubbard The Jovian surface condition and cooling rate , 1977 .

[32]  Hohl,et al.  Miscibility of hydrogen and helium under astrophysical conditions. , 1995, Physical review letters.

[33]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[34]  D. Gautier,et al.  Saturn Helium Abundance: A Reanalysis of Voyager Measurements , 2000 .

[35]  M. Ross Linear-mixing model for shock-compressed liquid deuterium , 1998 .

[36]  W. Hubbard,et al.  Statistical mechanics of light elements at high pressure. VII: A perturbative free energy for arbitrary mixtures of H and He , 1985 .

[37]  William B. Hubbard,et al.  A Theory for the Radius of the Transiting Giant Planet HD 209458b , 2003, astro-ph/0305277.

[38]  J. Lunine,et al.  Enrichments in Volatiles in Jupiter: A New Interpretation of the Galileo Measurements , 2001 .

[39]  D. Stevenson Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures , 1975 .

[40]  Phase separation in giant planets: inhomogeneous evolution of Saturn , 2003, astro-ph/0305031.

[41]  P. Bodenheimer,et al.  On the Radii of Extrasolar Giant Planets , 2003, astro-ph/0303541.