The composition and structure of Enceladus' plume from the complete set of Cassini UVIS occultation observations

Abstract Observations acquired at ultraviolet wavelengths are uniquely well-suited to investigate the composition and structure of Enceladus' plume. This paper describes the observations, analysis techniques and results of all the Enceladus occultations observed by Cassini's Ultraviolet Imaging Spectrograph (UVIS) and other observations designed to study the plume. Limits on gas at non-polar latitudes are derived. Constraints on the minor constituents' composition of Enceladus' primarily water vapor plume are evaluated. The overall source rate variability over a time span of 13 years is

[1]  K. Yoshino,et al.  Photoabsorption cross section measurements of CO2 between 106.1 and 118.7nm at 295 and 195K , 2007 .

[2]  D. Judge,et al.  Measurements of temperature‐dependent absorption cross sections of C2H2 in the VUV‐UV region , 2001 .

[3]  J. Nee,et al.  Photoexcitation processes of CH3OH: Rydberg states and photofragment fluorescence , 1985 .

[4]  D. TeolisBen,et al.  Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations. , 2017 .

[5]  C. Russell,et al.  Identification of a Dynamic Atmosphere at Enceladus with the Cassini Magnetometer , 2006, Science.

[6]  Carolyn C. Porco,et al.  HOW THE GEYSERS, TIDAL STRESSES, AND THERMAL EMISSION ACROSS THE SOUTH POLAR TERRAIN OF ENCELADUS ARE RELATED , 2014 .

[7]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[8]  C. Hansen,et al.  Spatial variations in the dust-to-gas ratio of Enceladus' plume , 2018, 1801.01567.

[9]  N. Brilliantov,et al.  Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures , 2008, Nature.

[10]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[11]  H. Keller,et al.  Ultraviolet Imaging Spectroscopy Shows an Active Saturnian System , 2005, Science.

[12]  T. Johnson,et al.  Enceladus: A hypothesis for bringing both heat and chemicals to the surface , 2012 .

[13]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[14]  A. Rubin,et al.  Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes , 2016, Proceedings of the National Academy of Sciences.

[15]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[16]  C. Hansen,et al.  Water vapour jets inside the plume of gas leaving Enceladus , 2008, Nature.

[17]  U. Beckmann,et al.  How the Enceladus dust plume feeds Saturn’s E ring , 2010 .

[18]  J. Richardson,et al.  A self‐consistent model of plasma and neutrals at Saturn: Neutral cloud morphology , 2005 .

[19]  J. Baross,et al.  The pH of Enceladus’ ocean , 2015, 1502.01946.

[20]  Donald A. Gurnett,et al.  A diffusive equilibrium model for the plasma density in Saturn's magnetosphere , 2009 .

[21]  J. Richardson,et al.  Saturn: Search for a missing water source , 2002 .

[22]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[23]  D. Shemansky,et al.  Detection of the hydroxyl radical in the Saturn magnetosphere , 1993, Nature.

[24]  D. Judge,et al.  Temperature‐dependent photoabsorption cross sections in the VUV‐UV region: Ethylene , 2004 .

[25]  P. Schenk The Colors of Enceladus: From Plumes and Particles to Active Fractures , 2014 .

[26]  Henrik Melin,et al.  The distribution of atomic hydrogen and oxygen in the magnetosphere of Saturn , 2009 .

[27]  Sascha Kempf,et al.  Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring , 2006, Science.

[28]  J. Breton,et al.  Vibrational band oscillator strengths and dipole transition moment of the A 1Π–X 1Σ+ system of CO , 1992 .

[29]  R. Sander,et al.  The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest , 2013 .

[30]  L. Esposito,et al.  CASSINI UVIS STELLAR OCCULTATION OBSERVATIONS OF SATURN's RINGS , 2010 .

[31]  F. Bagenal,et al.  Modeling the Enceladus plume–plasma interaction , 2009, 1001.0787.

[32]  S. Hoffmann,et al.  Water VUV electronic state spectroscopy by synchrotron radiation , 2005 .

[33]  C. Hansen,et al.  Investigation of diurnal variability of water vapor in Enceladus' plume by the Cassini ultraviolet imaging spectrograph , 2017 .

[34]  S. W. Asmar,et al.  The Gravity Field and Interior Structure of Enceladus , 2014, Science.

[35]  B. Cheng,et al.  Photoabsorption cross sections of NH3, NH2D, NHD2, and ND3 in the spectral range 110-144 nm. , 2007, The Journal of chemical physics.

[36]  C. E. Brion,et al.  The electronic spectrum of water in the discrete and continuum regions. Absolute optical oscillator strengths for photoabsorption (6–200 eV) , 1993 .

[37]  Yuk L. Yung,et al.  Absorption Cross Sections of NH3, NH2D, NHD2, and ND3 in the Spectral Range 140-220 nm and Implications for Planetary Isotopic Fractionation , 2006 .

[38]  R. Srama,et al.  A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.

[39]  C. Hansen,et al.  Modeling the complete set of Cassini’s UVIS occultation observations of Enceladus’ plume , 2018, Icarus.

[40]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[41]  John R. Spencer,et al.  Enceladus: An Active Ice World in the Saturn System , 2013 .

[42]  L. Esposito,et al.  Ultraviolet observation of Enceladus' plume in transit across Saturn, compared to Europa , 2019, Icarus.

[43]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[44]  Gabriel Tobie,et al.  Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data , 2016 .

[45]  W. Ip,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[46]  Robert A. West,et al.  The composition and structure of the Enceladus plume , 2011 .

[47]  K. Ito,et al.  Absolute absorption cross-section measurements of Schumann–Runge continuum of O2 at 90 and 295 K , 2005 .

[48]  Carolyn C. Porco,et al.  Association of the jets of Enceladus with the warmest regions on its south-polar fractures , 2007, Nature.

[49]  H. Keller,et al.  The Cassini Ultraviolet Imaging Spectrograph Investigation , 2004 .

[50]  R. H. Brown,et al.  An observed correlation between plume activity and tidal stresses on Enceladus , 2013, Nature.

[51]  C. Sotin,et al.  The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover , 2013 .

[52]  A. Ingersoll,et al.  Total particulate mass in Enceladus plumes and mass of Saturn’s E ring inferred from Cassini ISS images , 2011 .

[53]  C. Porco,et al.  TIDALLY MODULATED ERUPTIONS ON ENCELADUS: CASSINI ISS OBSERVATIONS AND MODELS , 2014 .