Algebraic invariants for crystallographic defects in cellular automata
暂无分享,去创建一个
[1] R. Zimmer. On the cohomology of ergodic group actions , 1980 .
[2] R. Ho. Algebraic Topology , 2022 .
[3] James Edwin Hanson,et al. Computational Mechanics of Cellular Automata , 1993 .
[4] Kari Eloranta. The bounded eight-vertex model , 2003, Theor. Comput. Sci..
[5] A classification of the finite extensions of a multidimensional Bernoulli shift , 1993 .
[6] Janet Whalen Kammeyer. A complete classification of the two-point extensions of a multidimensional bernoulli shift , 1990 .
[7] J. Propp,et al. Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.
[8] P. Grassberger. New mechanism for deterministic diffusion , 1983 .
[9] K. Eloranta,et al. Partially permutive cellular automata , 1993 .
[10] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[11] K. Eloranta. Diamond Ice , 1999 .
[12] E. M. Brown. Proper homotopy theory in simplicial complexes , 1974 .
[13] James P. Crutchfield,et al. Mechanisms of Emergent Computation in Cellular Automata , 1998, PPSN.
[14] H. O. Foulkes. Abstract Algebra , 1967, Nature.
[15] Scott Sheffield,et al. Ribbon tilings and multidimensional height functions , 2001, math/0107095.
[16] James P. Crutchfield,et al. Attractor vicinity decay for a cellular automaton. , 1993, Chaos.
[17] Peter Grassberger,et al. Chaos and diffusion in deterministic cellular automata , 1984 .
[18] A. Scott,et al. Ann Arbor , 1980 .
[19] G. C. Shephard,et al. Tilings and Patterns , 1990 .
[20] J. Propp,et al. A variational principle for domino tilings , 2000, math/0008220.
[21] Georg Peschke,et al. The Theory of Ends , 1990 .
[22] James Propp. A pedestrian approach to a method of Conway, or, a tale of two cities , 1997 .
[23] J. Crutchfield,et al. The attractor—basin portrait of a cellular automaton , 1992 .
[24] Editors , 1986, Brain Research Bulletin.
[25] B. M. Fulk. MATH , 1992 .
[26] R. Zimmer. Extensions of ergodic group actions , 1976 .
[27] Fundamental cocycles of tiling spaces , 2001, Ergodic Theory and Dynamical Systems.
[28] W. Thurston. Conway's tiling groups , 1990 .
[29] N. Boccara,et al. BLOCK TRANSFORMATIONS OF ONE-DIMENSIONAL DETERMINISTIC CELLULAR AUTOMATON RULES , 1991 .
[30] Petr Kůrka. On the measure attractor of a cellular automaton , 2005 .
[31] Marcus Pivato. Spectral Domain Boundaries in Cellular Automata , 2007, Fundam. Informaticae.
[32] Petr Kurka,et al. Stability of subshifts in cellular automata , 2002, Fundam. Informaticae.
[33] B. Kitchens. Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .
[34] P. Kam,et al. : 4 , 1898, You Can Cross the Massacre on Foot.
[35] K. Eloranta. Random walks in cellular automata , 1993 .
[36] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[37] On proper homotopy theory for noncompact 3-manifolds , 1974 .
[38] E. Nummelin,et al. The kink of cellular automaton rule 18 performs a random walk , 1992 .
[39] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[40] R. Tennant. Algebra , 1941, Nature.
[41] N. Boccara,et al. Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[42] Alejandro Maass,et al. On the sofic limit sets of cellular automata , 1995, Ergodic Theory and Dynamical Systems.
[43] Tilings, fundamental cocycles and fundamental groups of symbolic ${\Bbb Z}^{d}$-actions , 1998, Ergodic Theory and Dynamical Systems.
[44] J. Crutchfield,et al. Upper bound on the products of particle interactions in cellular automata , 2000, nlin/0008038.
[45] Kari Eloranta,et al. The dynamics of defect ensembles in one-dimensional cellular automata , 1994 .
[46] J. Crutchfield,et al. Turbulent pattern bases for cellular automata , 1993 .
[47] TILINGS, FUNDAMENTAL COCYCLES AND FUNDAMENTAL GROUPS OF SYMBOLIC Zd-ACTIONS , 2006 .
[48] Alejandro Maass,et al. Limit Sets of Cellular Automata Associated to Probability Measures , 2000 .
[49] G. Ragsdell. Systems , 2002, Economics of Visual Art.
[50] D. Lind. Applications of ergodic theory and sofic systems to cellular automata , 1984 .
[51] Petr Kurka. Cellular automata with vanishing particles , 2003, Fundam. Informaticae.
[52] Marcus Pivato. Defect particle kinematics in one-dimensional cellular automata , 2007, Theor. Comput. Sci..
[53] Jeffrey C. Lagarias,et al. Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.
[54] James P. Crutchfield,et al. Computational mechanics of cellular automata: an example , 1997 .
[55] R. Baxter. Exactly solved models in statistical mechanics , 1982 .
[56] P. Steerenberg,et al. Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.
[57] Krug,et al. Universality classes for deterministic surface growth. , 1988, Physical review. A, General physics.
[58] R. Zimmer. Cocycles and the structure of ergodic group actions , 1977 .
[59] K. Schmidt. The cohomology of higher-dimensional shifts of finite type , 1995 .