Algebraic invariants for crystallographic defects in cellular automata

Let ${\mathcal{A}}^{{\mathbb{Z}}^D}$ be the Cantor space of ${\mathbb{Z}}^D$-indexed configurations in a finite alphabet ${\mathcal{A}}$, and let $\sigma$ be the ${\mathbb{Z}}^D$-action of shifts on ${\mathcal{A}}^{{\mathbb{Z}}^D}$. A cellular automaton is a continuous, $\sigma$-commuting self-map $\Phi$ of ${\mathcal{A}}^{{\mathbb{Z}}^D}$, and a $\Phi$-invariant subshift is a closed, $(\Phi,\sigma)$-invariant subset ${\mathfrak{A}}\subset{\mathcal{A}}^{{\mathbb{Z}}^D}$. Suppose that ${\mathbf{a}}\in{\mathcal{A}}^{{\mathbb{Z}}^D}$ is ${\mathfrak{A}}$-admissible everywhere except for some small region that we call a defect. It has been empirically observed that such defects persist under iteration of $\Phi$, and often propagate like ‘particles’ which coalesce or annihilate on contact. We construct algebraic invariants for these defects, which explain their persistence under $\Phi$, and partly explain the outcomes of their collisions. Some invariants are based on the cocycles of multidimensional subshifts; others arise from the higher-dimensional (co)homology/homotopy groups for subshifts, obtained by generalizing the Conway–Lagarias tiling groups and the Geller–Propp fundamental group.

[1]  R. Zimmer On the cohomology of ergodic group actions , 1980 .

[2]  R. Ho Algebraic Topology , 2022 .

[3]  James Edwin Hanson,et al.  Computational Mechanics of Cellular Automata , 1993 .

[4]  Kari Eloranta The bounded eight-vertex model , 2003, Theor. Comput. Sci..

[5]  A classification of the finite extensions of a multidimensional Bernoulli shift , 1993 .

[6]  Janet Whalen Kammeyer A complete classification of the two-point extensions of a multidimensional bernoulli shift , 1990 .

[7]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[8]  P. Grassberger New mechanism for deterministic diffusion , 1983 .

[9]  K. Eloranta,et al.  Partially permutive cellular automata , 1993 .

[10]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[11]  K. Eloranta Diamond Ice , 1999 .

[12]  E. M. Brown Proper homotopy theory in simplicial complexes , 1974 .

[13]  James P. Crutchfield,et al.  Mechanisms of Emergent Computation in Cellular Automata , 1998, PPSN.

[14]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[15]  Scott Sheffield,et al.  Ribbon tilings and multidimensional height functions , 2001, math/0107095.

[16]  James P. Crutchfield,et al.  Attractor vicinity decay for a cellular automaton. , 1993, Chaos.

[17]  Peter Grassberger,et al.  Chaos and diffusion in deterministic cellular automata , 1984 .

[18]  A. Scott,et al.  Ann Arbor , 1980 .

[19]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[20]  J. Propp,et al.  A variational principle for domino tilings , 2000, math/0008220.

[21]  Georg Peschke,et al.  The Theory of Ends , 1990 .

[22]  James Propp A pedestrian approach to a method of Conway, or, a tale of two cities , 1997 .

[23]  J. Crutchfield,et al.  The attractor—basin portrait of a cellular automaton , 1992 .

[24]  Editors , 1986, Brain Research Bulletin.

[25]  B. M. Fulk MATH , 1992 .

[26]  R. Zimmer Extensions of ergodic group actions , 1976 .

[27]  Fundamental cocycles of tiling spaces , 2001, Ergodic Theory and Dynamical Systems.

[28]  W. Thurston Conway's tiling groups , 1990 .

[29]  N. Boccara,et al.  BLOCK TRANSFORMATIONS OF ONE-DIMENSIONAL DETERMINISTIC CELLULAR AUTOMATON RULES , 1991 .

[30]  Petr Kůrka On the measure attractor of a cellular automaton , 2005 .

[31]  Marcus Pivato Spectral Domain Boundaries in Cellular Automata , 2007, Fundam. Informaticae.

[32]  Petr Kurka,et al.  Stability of subshifts in cellular automata , 2002, Fundam. Informaticae.

[33]  B. Kitchens Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .

[34]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[35]  K. Eloranta Random walks in cellular automata , 1993 .

[36]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[37]  On proper homotopy theory for noncompact 3-manifolds , 1974 .

[38]  E. Nummelin,et al.  The kink of cellular automaton rule 18 performs a random walk , 1992 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  R. Tennant Algebra , 1941, Nature.

[41]  N. Boccara,et al.  Particlelike structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular-automaton rules. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[42]  Alejandro Maass,et al.  On the sofic limit sets of cellular automata , 1995, Ergodic Theory and Dynamical Systems.

[43]  Tilings, fundamental cocycles and fundamental groups of symbolic ${\Bbb Z}^{d}$-actions , 1998, Ergodic Theory and Dynamical Systems.

[44]  J. Crutchfield,et al.  Upper bound on the products of particle interactions in cellular automata , 2000, nlin/0008038.

[45]  Kari Eloranta,et al.  The dynamics of defect ensembles in one-dimensional cellular automata , 1994 .

[46]  J. Crutchfield,et al.  Turbulent pattern bases for cellular automata , 1993 .

[47]  TILINGS, FUNDAMENTAL COCYCLES AND FUNDAMENTAL GROUPS OF SYMBOLIC Zd-ACTIONS , 2006 .

[48]  Alejandro Maass,et al.  Limit Sets of Cellular Automata Associated to Probability Measures , 2000 .

[49]  G. Ragsdell Systems , 2002, Economics of Visual Art.

[50]  D. Lind Applications of ergodic theory and sofic systems to cellular automata , 1984 .

[51]  Petr Kurka Cellular automata with vanishing particles , 2003, Fundam. Informaticae.

[52]  Marcus Pivato Defect particle kinematics in one-dimensional cellular automata , 2007, Theor. Comput. Sci..

[53]  Jeffrey C. Lagarias,et al.  Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.

[54]  James P. Crutchfield,et al.  Computational mechanics of cellular automata: an example , 1997 .

[55]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[56]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[57]  Krug,et al.  Universality classes for deterministic surface growth. , 1988, Physical review. A, General physics.

[58]  R. Zimmer Cocycles and the structure of ergodic group actions , 1977 .

[59]  K. Schmidt The cohomology of higher-dimensional shifts of finite type , 1995 .