Nearest-neighbor error correcting codes on a hexagonal signal constellation

We propose a new class of single error correcting linear codes suitable for a two dimensional hexagonal constellation. The proposed code is a linear subspace of ℤ<sub>6n+1</sub><sup>n</sup> where n is code length and 6n + 1 is a prime number. It corrects a single error in the set |±1, ±α<sup>n</sup>, ±α<sup>2n</sup>} where α is a primitive element of ℤ<sub>6n+1</sub><sup>x</sup>. Moreover, we apply the proposed code to a two dimensional hexagonal constellation and show that it corrects an error such that a transmitted symbol moves to one of its nearest neighbors over the hexagonal constellation at the decoder side. We also consider an extension of the proposed code to double nearest neighbor error correcting codes. Some examples of such codes obtained by computer-assisted search are presented.

[1]  Hristo Kostadinov,et al.  Soft Decoding of Integer Codes and Their Application to Coded Modulation , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[2]  Hristo Kostadinov,et al.  Integer Codes Correcting Single Errors of Specific Types (±e1, ±e2, ..., ±es) , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[3]  Hiroyoshi Morita,et al.  Codes over the Ring of Integers Modulo m (Special Section on Information Theory and Its Applications) , 1998 .

[4]  I. Vaughan L. Clarkson,et al.  On the Error Performance of the $A_{n}$ Lattices , 2012, IEEE Transactions on Information Theory.

[5]  Ian F. Blake Codes Over Certain Rings , 1972, Inf. Control..

[6]  Aleksandar Radonjic,et al.  Integer Codes Correcting Burst Errors within a Byte , 2013, IEEE Transactions on Computers.

[7]  Akihiro Munemasa On perfectt-shift codes in abelian groups , 1995, Des. Codes Cryptogr..

[8]  A. J. Han Vinck,et al.  Perfect (d, k)-codes capable of correcting single peak-shifts , 1993, IEEE Trans. Inf. Theory.

[9]  Ulrich Tamm On perfect 3-shift N-designs , 1997, Proceedings of IEEE International Symposium on Information Theory.

[10]  Marcus Greferath,et al.  Cyclic codes over finite rings , 1997, Discret. Math..

[11]  Jae Hong Lee,et al.  On the Use of Hexagonal Constellation for Peak-to-Average Power Ratio Reduction of an ODFM Signal , 2008, IEEE Transactions on Wireless Communications.

[12]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..

[13]  Taher Abu Alrub Codes over Zm , 1998 .

[14]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .