Model-data interaction in groundwater studies: Review of methods, applications and future directions

[1]  Sk Faisal Kabir,et al.  Efficiency of using 4DVar, 3DVar and EnKF data assimilation methods in groundwater contaminant transport modelling , 2019 .

[2]  Jeremy T. White,et al.  A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions , 2018, Environ. Model. Softw..

[3]  J. Jaime Gómez-Hernández,et al.  Stochastic analysis of three-dimensional hydraulic conductivity upscaling in a heterogeneous tropical soil , 2018, Computers and Geotechnics.

[4]  T. Culver,et al.  Prediction uncertainty and data worth assessment for groundwater transport times in an agricultural catchment , 2018, Journal of Hydrology.

[5]  W. Nowak,et al.  A Primer for Model Selection: The Decisive Role of Model Complexity , 2018 .

[6]  Keith Beven,et al.  On hypothesis testing in hydrology: Why falsification of models is still a really good idea , 2018 .

[7]  J. Gómez-Hernández,et al.  Simultaneous identification of a contaminant source and hydraulic conductivity via the restart normal-score ensemble Kalman filter , 2018 .

[8]  Michael N. Fienen,et al.  A tool for efficient, model-independent management optimization under uncertainty , 2018, Environ. Model. Softw..

[9]  Scott D. Brown,et al.  A simple introduction to Markov Chain Monte–Carlo sampling , 2016, Psychonomic bulletin & review.

[10]  Peyman Abbaszadeh,et al.  Enhancing hydrologic data assimilation by evolutionary Particle Filter and Markov Chain Monte Carlo , 2018 .

[11]  Mohammad Rajabi,et al.  Uncertainty-based simulation-optimization using Gaussian process emulation: Application to coastal groundwater management , 2017 .

[12]  James Irving,et al.  On uncertainty quantification in hydrogeology and hydrogeophysics , 2017 .

[13]  A. Siade,et al.  A Practical, Robust Methodology for Acquiring New Observation Data Using Computationally Expensive Groundwater Models , 2017 .

[14]  Shoou-Yuh Chang,et al.  Use of Multiple Data Assimilation Techniques in Groundwater Contaminant Transport Modeling. , 2017, Water environment research : a research publication of the Water Environment Federation.

[15]  Reza Kerachian,et al.  A data fusion-based methodology for optimal redesign of groundwater monitoring networks , 2017 .

[16]  Kevin Hayley,et al.  The Present State and Future Application of Cloud Computing for Numerical Groundwater Modeling , 2017, Ground water.

[17]  P. Renard,et al.  Advances in understanding river‐groundwater interactions , 2017 .

[18]  Chefi Triki,et al.  An Artificial Intelligence Approach for the Stochastic Management of Coastal Aquifers , 2017, Water Resources Management.

[19]  C. Kikuchi,et al.  Toward Increased Use of Data Worth Analyses in Groundwater Studies , 2017, Ground water.

[20]  Andrew T Leaf,et al.  Using Models to Identify the Best Data: An Example from Northern Wisconsin , 2017, Ground water.

[21]  Peter G. Kropf,et al.  Integrating hydrological modelling, data assimilation and cloud computing for real-time management of water resources , 2017, Environ. Model. Softw..

[22]  Mark Bakker,et al.  The influence of the length of the calibration period and observation frequency on predictive uncertainty in time series modeling of groundwater dynamics , 2017 .

[23]  O. Cirpka,et al.  Preconditioning an ensemble Kalman filter for groundwater flow using environmental-tracer observations , 2017 .

[24]  Haibin Chang,et al.  Surrogate model based iterative ensemble smoother for subsurface flow data assimilation , 2017 .

[25]  Peter K. Kitanidis,et al.  Optimal Decision Making Algorithm for Managed Aquifer Recharge and Recovery Operation Using Near Real‐Time Data: Benchtop Scale Laboratory Demonstration , 2017 .

[26]  Vivian E Sovinsky Comparing Groundwater Model Calibration Approaches: Does an Optimized Model Better Reflect Reality When Both Flow and Transport Observations are Applied? , 2017 .

[27]  Wolfgang Nowak,et al.  Optimal Design of Multitype Groundwater Monitoring Networks Using Easily Accessible Tools. , 2016, Ground water.

[28]  Michael N. Fienen,et al.  A python framework for environmental model uncertainty analysis , 2016, Environ. Model. Softw..

[29]  Lingzao Zeng,et al.  An adaptive Gaussian process‐based method for efficient Bayesian experimental design in groundwater contaminant source identification problems , 2016 .

[30]  Teng Xu,et al.  Characterization of non‐Gaussian conductivities and porosities with hydraulic heads, solute concentrations, and water temperatures , 2016 .

[31]  J. Gómez-Hernández,et al.  Joint identification of contaminant source location, initial release time, and initial solute concentration in an aquifer via ensemble Kalman filtering , 2016 .

[32]  Frédéric Chevallier,et al.  Fundamentals of Data Assimilation , 2016 .

[33]  B. Ataie‐Ashtiani,et al.  Efficient fuzzy Bayesian inference algorithms for incorporating expert knowledge in parameter estimation , 2016 .

[34]  M. Dentz,et al.  Pictures of blockscale transport: Effective versus ensemble dispersion and its uncertainty , 2016, 1611.08411.

[35]  Frank T.-C. Tsai,et al.  Optimal observation network design for conceptual model discrimination and uncertainty reduction , 2016 .

[36]  George Shu Heng Pau,et al.  Fast high-resolution prediction of multi-phase flow in fractured formations , 2016 .

[37]  T. Olsen,et al.  Simulation of groundwater storage changes in the eastern Pasco Basin, Washington , 2016 .

[38]  Anja Rammig,et al.  Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. , 2016, The New phytologist.

[39]  Jasper A. Vrugt,et al.  Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation , 2016, Environ. Model. Softw..

[40]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[41]  J. White,et al.  pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis , 2015 .

[42]  Stefan Finsterle,et al.  Practical notes on local data‐worth analysis , 2015 .

[43]  Hamed Ketabchi,et al.  Assessment of a parallel evolutionary optimization approach for efficient management of coastal aquifers , 2015, Environ. Model. Softw..

[44]  Dan Lu,et al.  Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models , 2015 .

[45]  Gary Feng,et al.  Bayesian inference of the groundwater depth threshold in a vegetation dynamic model: A case study, lower reach, Tarim River , 2015 .

[46]  J. Vrugt,et al.  On the optimal design of experiments for conceptual and predictive discrimination of hydrologic system models , 2015 .

[47]  J. Doherty,et al.  Uncertainty Analysis of a Groundwater Flow Model in East‐Central Florida , 2015, Ground water.

[48]  Hamed Ketabchi,et al.  Review: Coastal groundwater optimization—advances, challenges, and practical solutions , 2015, Hydrogeology Journal.

[49]  Hans Janssen,et al.  Efficiency enhancement of optimized Latin hypercube sampling strategies: Application to Monte Carlo uncertainty analysis and meta-modeling , 2015 .

[50]  Randall J. Hunt,et al.  Approaches in highly parameterized inversion—PEST++ Version 3, a Parameter ESTimation and uncertainty analysis software suite optimized for large environmental models , 2015 .

[51]  Hamed Ketabchi,et al.  Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges , 2015 .

[52]  Mohammad Rajabi,et al.  Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations , 2015 .

[53]  Hans R. Künsch,et al.  The effect of ambiguous prior knowledge on Bayesian model parameter inference and prediction , 2014, Environ. Model. Softw..

[54]  Alberto Guadagnini,et al.  Multimodel Bayesian analysis of groundwater data worth , 2014 .

[55]  Ming Ye,et al.  A computer program for uncertainty analysis integrating regression and Bayesian methods , 2014, Environ. Model. Softw..

[56]  Henning Prommer,et al.  Using predictive uncertainty analysis to optimise tracer test design and data acquisition , 2014 .

[57]  Mac McKee,et al.  Use of a relevance vector machine for groundwater quality monitoring network design under uncertainty , 2014, Environ. Model. Softw..

[58]  Tiangang Cui,et al.  Characterization of Parameters for a Spatially Heterogenous Aquifer from Pumping Test Data , 2014 .

[59]  Behzad Ataie-Ashtiani,et al.  Sampling efficiency in Monte Carlo based uncertainty propagation strategies: Application in seawater intrusion simulations , 2014 .

[60]  Mohammad Sayemuzzaman,et al.  Using Unscented Kalman Filter in Subsurface Contaminant Transport Models , 2014 .

[61]  Philippe Bousquet,et al.  Methane on the Rise—Again , 2014, Science.

[62]  Liangping Li,et al.  Inverse methods in hydrogeology: Evolution and recent trends , 2014 .

[63]  Ibrahim Hoteit,et al.  Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering , 2013 .

[64]  Vladik Kreinovich,et al.  Bayesian approach for inconsistent information , 2013, Inf. Sci..

[65]  Hamed Ketabchi,et al.  Inverse modelling for freshwater lens in small islands: Kish Island, Persian Gulf , 2013 .

[66]  X. Zeng,et al.  Review of the uncertainty analysis of groundwater numerical simulation , 2013 .

[67]  John Doherty,et al.  Groundwater modelling in decision support: reflections on a unified conceptual framework , 2013, Hydrogeology Journal.

[68]  Joseph H. A. Guillaume,et al.  Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT , 2013, Environ. Model. Softw..

[69]  Keith Beven,et al.  A guide to good practice in modeling semantics for authors and referees , 2013 .

[70]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[71]  D. Oliver,et al.  Levenberg–Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification , 2013, Computational Geosciences.

[72]  D. Mallants,et al.  Efficient posterior exploration of a high‐dimensional groundwater model from two‐stage Markov chain Monte Carlo simulation and polynomial chaos expansion , 2013 .

[73]  V. Kreinovich,et al.  Imprecise probabilities in engineering analyses , 2013 .

[74]  Yih-Chi Tan,et al.  Fusion of Active and Passive Hydrologic and Geophysical Tomographic Surveys: The Future of Subsurface Characterization , 2013 .

[75]  J. Jaime Gómez-Hernández,et al.  Parallelized ensemble Kalman filter for hydraulic conductivity characterization , 2013, Comput. Geosci..

[76]  M. Mariño,et al.  Groundwater Model Calibration by Meta-Heuristic Algorithms , 2013, Water Resources Management.

[77]  Fakhri Karray,et al.  Multisensor data fusion: A review of the state-of-the-art , 2013, Inf. Fusion.

[78]  Soroosh Sorooshian,et al.  Evolution of ensemble data assimilation for uncertainty quantification using the particle filter‐Markov chain Monte Carlo method , 2012 .

[79]  Domenico Baù,et al.  Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation , 2012 .

[80]  Stefan Kollet,et al.  Introduction of a web service for cloud computing with the integrated hydrologic simulation platform ParFlow , 2012, Comput. Geosci..

[81]  Seong Jin Noh,et al.  Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities , 2012 .

[82]  Anthony O'Hagan,et al.  Probabilistic uncertainty specification: Overview, elaboration techniques and their application to a mechanistic model of carbon flux , 2012, Environ. Model. Softw..

[83]  Laurence Smith,et al.  The role of expert opinion in environmental modelling , 2012, Environ. Model. Softw..

[84]  Y. Zhang,et al.  A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions , 2012 .

[85]  Ming Ye,et al.  Towards a comprehensive assessment of model structural adequacy , 2012 .

[86]  J. Doherty,et al.  Uncertainty assessment and implications for data acquisition in support of integrated hydrologic models , 2012 .

[87]  Sorab Panday,et al.  Future of Groundwater Modeling , 2012, Ground water.

[88]  R. Hunt,et al.  Using Every Tool in the Toolbox , 2012, Ground water.

[89]  Shoou-Yuh Chang,et al.  State and Parameter Estimation with an SIR Particle Filter in a Three-Dimensional Groundwater Pollutant Transport Model , 2012 .

[90]  Wolfgang Nowak,et al.  Parameter Estimation by Ensemble Kalman Filters with Transformed Data , 2010 .

[91]  Haiyan Zhou,et al.  A pattern‐search‐based inverse method , 2012 .

[92]  Jens Christian Refsgaard,et al.  Review of strategies for handling geological uncertainty in groundwater flow and transport modeling , 2012 .

[93]  S. P. Neuman,et al.  Bayesian analysis of data-worth considering model and parameter uncertainties , 2012 .

[94]  Olaf A. Cirpka,et al.  Fully coupled hydrogeophysical inversion of a laboratory salt tracer experiment monitored by electrical resistivity tomography , 2012 .

[95]  Harrie-Jan Hendricks Franssen,et al.  Modeling transient groundwater flow by coupling ensemble Kalman filtering and upscaling , 2012 .

[96]  Jasper A. Vrugt,et al.  High‐dimensional posterior exploration of hydrologic models using multiple‐try DREAM(ZS) and high‐performance computing , 2012 .

[97]  Rita Deiana,et al.  Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three‐dimensional synthetic tracer test experiment , 2011 .

[98]  Le Lu,et al.  Bayesian Analysis for Uncertainty and Risk in a Groundwater Numerical Model's Predictions , 2011 .

[99]  F. Stauffer,et al.  The Role of Prior Model Calibration on Predictions with Ensemble Kalman Filter , 2011, Ground water.

[100]  Domenico Baù,et al.  Estimating geostatistical parameters and spatially-variable hydraulic conductivity within a catchment system using an ensemble smoother , 2011 .

[101]  G. Mahinthakumar,et al.  Subsurface characterization using a D-optimality based pilot point method , 2011 .

[102]  Markus Reichstein,et al.  The model–data fusion pitfall: assuming certainty in an uncertain world , 2011, Oecologia.

[103]  Nicola Stone,et al.  Gaussian Process Emulators for Uncertainty Analysis in Groundwater Flow , 2011 .

[104]  Hong Jiang,et al.  Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach. , 2011, Ecology letters.

[105]  Liangping Li,et al.  Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media , 2011 .

[106]  Harrie-Jan Hendricks Franssen,et al.  Operational real‐time modeling with ensemble Kalman filter of variably saturated subsurface flow including stream‐aquifer interaction and parameter updating , 2011 .

[107]  Patrick M. Reed,et al.  Many‐objective groundwater monitoring network design using bias‐aware ensemble Kalman filtering, evolutionary optimization, and visual analytics , 2011 .

[108]  H. Moradkhani,et al.  Snow water equivalent prediction using Bayesian data assimilation methods , 2011 .

[109]  Muriel Heistercamp,et al.  The Weinstein conjecture with multiplicities on spherizations Thèse présentée en vue de l ’ obtention du grade de Docteur en Sciences , 2011 .

[110]  Domenico Baù,et al.  Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution , 2010 .

[111]  Luk Peeters,et al.  Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling , 2010 .

[112]  Fan Zhang,et al.  Application of a hybrid MPI/OpenMP approach for parallel groundwater model calibration using multi-core computers , 2010, Comput. Geosci..

[113]  Q. Kang,et al.  Optimization and uncertainty assessment of strongly nonlinear groundwater models with high parameter dimensionality , 2010 .

[114]  J. Jaime Gómez-Hernández,et al.  Three-dimensional hydraulic conductivity upscaling in groundwater modeling , 2010, Comput. Geosci..

[115]  Jens Christian Refsgaard,et al.  Groundwater Modeling in Integrated Water Resources Management—Visions for 2020 , 2010, Ground water.

[116]  Ming Ye,et al.  A Model‐Averaging Method for Assessing Groundwater Conceptual Model Uncertainty , 2010, Ground water.

[117]  Qi Han,et al.  On Integrating Groundwater Transport Models with Wireless Sensor Networks , 2010, Ground water.

[118]  Christian D Langevin,et al.  Quantifying Data Worth Toward Reducing Predictive Uncertainty , 2010, Ground water.

[119]  Alain Dassargues,et al.  Bayesian data fusion for water table interpolation: Incorporating a hydrogeological conceptual model in kriging , 2010 .

[120]  Okke Batelaan,et al.  On the value of conditioning data to reduce conceptual model uncertainty in groundwater modeling , 2010 .

[121]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[122]  S. A. Finsterle iTOUGH2 Universal Optimization Using the PEST Protocol , 2010 .

[123]  Willem A. Schreuder,et al.  Using a Cloud to Replenish Parched Groundwater Modeling Efforts , 2010, Ground water.

[124]  Jan Vanderborght,et al.  Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources , 2010 .

[125]  Frank T.-C. Tsai,et al.  Bayesian model averaging assessment on groundwater management under model structure uncertainty , 2010 .

[126]  L. Slooten,et al.  Computational and conceptual issues in the calibration of seawater intrusion models , 2010 .

[127]  Wolfgang Nowak,et al.  Measures of Parameter Uncertainty in Geostatistical Estimation and Geostatistical Optimal Design , 2010 .

[128]  George F. Pinder,et al.  Aleatoric and epistemic uncertainty in groundwater flow and transport simulation. , 2009 .

[129]  J. Doherty,et al.  Calibration‐constrained Monte Carlo analysis of highly parameterized models using subspace techniques , 2009 .

[130]  Christine A. Shoemaker,et al.  Introduction to special section on Uncertainty Assessment in Surface and Subsurface Hydrology: An overview of issues and challenges , 2009 .

[131]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[132]  Ian G. Enting,et al.  A review of applications of model–data fusion to studies of terrestrial carbon fluxes at different scales , 2009 .

[133]  J. Jaime Gómez-Hernández,et al.  Upscaling transport with mass transfer models: Mean behavior and propagation of uncertainty , 2009 .

[134]  Frank T.-C. Tsai,et al.  Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod , 2009 .

[135]  D. McLaughlin,et al.  Using data assimilation to identify diffuse recharge mechanisms from chemical and physical data in the unsaturated zone , 2009 .

[136]  Simultaneous identification of parameter, initial condition, and boundary condition in groundwater modelling , 2009 .

[137]  H. H. Franssen,et al.  A comparison of seven methods for the inverse modelling of groundwater flow. Application to the characterisation of well catchments , 2009 .

[138]  Hesham M. Bekhit,et al.  Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model , 2009, Environ. Model. Softw..

[139]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[140]  Harrie-Jan Hendricks Franssen,et al.  Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems , 2009 .

[141]  J. Gómez-Hernández,et al.  Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. , 2009 .

[142]  D. L. Nelms,et al.  Simulation of Groundwater-Level and Salinity Changes in the Eastern Shore, Virginia , 2009 .

[143]  J. Triantafilis,et al.  Mapping Water Table Depth Using Geophysical and Environmental Variables , 2009, Ground water.

[144]  Ombretta Paladino,et al.  Optimal sampling for the estimation of dispersion parameters in soil columns using an Iterative Genetic Algorithm , 2009, Environ. Model. Softw..

[145]  D. Higdon,et al.  Accelerating Markov Chain Monte Carlo Simulation by Differential Evolution with Self-Adaptive Randomized Subspace Sampling , 2009 .

[146]  Dominique Fasbender,et al.  Bayesian data fusion applied to water table spatial mapping , 2008 .

[147]  P. Bickel,et al.  Obstacles to High-Dimensional Particle Filtering , 2008 .

[148]  Ahmed E. Hassan,et al.  Uncertainty assessment of a stochastic groundwater flow model using GLUE analysis , 2008 .

[149]  R. Reichle Data assimilation methods in the Earth sciences , 2008 .

[150]  Frank T.-C. Tsai,et al.  Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window , 2008 .

[151]  W. Kinzelbach,et al.  Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem , 2008 .

[152]  A. Michalak A Gibbs sampler for inequality‐constrained geostatistical interpolation and inverse modeling , 2008 .

[153]  Arnold Neumaier,et al.  SNOBFIT -- Stable Noisy Optimization by Branch and Fit , 2008, TOMS.

[154]  Dongxiao Zhang,et al.  Investigation of flow and transport processes at the MADE site using ensemble Kalman filter , 2008 .

[155]  J. Vrugt,et al.  Inverse Modeling of Subsurface Flow and Transport Properties: A Review with New Developments , 2008 .

[156]  Xin Li,et al.  An evaluation of the nonlinear/non-Gaussian filters for the sequential data assimilation , 2008 .

[157]  Harrie-Jan Hendricks Franssen,et al.  Equally likely inverse solutions to a groundwater flow problem including pattern information from remote sensing images , 2008 .

[158]  Keith Beven,et al.  Detection of structural inadequacy in process‐based hydrological models: A particle‐filtering approach , 2008 .

[159]  P. Renard,et al.  Issues in characterizing heterogeneity and connectivity in non-multiGaussian media , 2008 .

[160]  Dominique Fasbender,et al.  Bayesian data fusion in environmental sciences : theory and applications , 2008 .

[161]  C. Gouriéroux,et al.  Non-Gaussian State-Space Modeling of Nonstationary Time Series , 2008 .

[162]  Richard Swinbank,et al.  Data assimilation of stratospheric constituents: a review , 2007 .

[163]  Yuqiong Liu,et al.  Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework , 2007 .

[164]  K. Beven Environmental Modelling , 2007 .

[165]  K. Jensen,et al.  The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system , 2007 .

[166]  Wade T. Crow,et al.  An adaptive ensemble Kalman filter for soil moisture data assimilation , 2007 .

[167]  M. Hulme,et al.  Assessing the robustness of adaptation decisions to climate change uncertainties: A case study on water resources management in the East of England , 2007 .

[168]  Peter Bayer,et al.  Optimization of concentration control by evolution strategies: Formulation, application, and assessment of remedial solutions , 2007 .

[169]  C. Tiedeman,et al.  Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty , 2007 .

[170]  A. Lorenc,et al.  The Met Office global four‐dimensional variational data assimilation scheme , 2007 .

[171]  Alexander Y Sun,et al.  A robust approach for iterative contaminant source location and release history recovery. , 2006, Journal of contaminant hydrology.

[172]  Lars Rosén,et al.  Calculating the optimal number of contaminant samples by means of data worth analysis , 2006 .

[173]  Andres Alcolea,et al.  Pilot points method incorporating prior information for solving the groundwater flow inverse problem , 2006 .

[174]  Subhash R. Lele,et al.  On using expert opinion in ecological analyses: a frequentist approach , 2006 .

[175]  P. Mantovan,et al.  Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology , 2006 .

[176]  X. Sanchez‐Vila,et al.  Representative hydraulic conductivities in saturated groundwater flow , 2006 .

[177]  D. McLaughlin,et al.  Assessing the Performance of the Ensemble Kalman Filter for Land Surface Data Assimilation , 2006 .

[178]  Yan Chen,et al.  Data assimilation for transient flow in geologic formations via ensemble Kalman filter , 2006 .

[179]  Henrik Madsen,et al.  Calibration framework for a Kalman filter applied to a groundwater model , 2006 .

[180]  F. Pappenberger,et al.  Ignorance is bliss: Or seven reasons not to use uncertainty analysis , 2006 .

[181]  Jinsong Chen,et al.  Joint inversion of geophysical and hydrological data for improved subsurface characterization , 2006 .

[182]  J. Doherty,et al.  The cost of uniqueness in groundwater model calibration , 2006 .

[183]  Matthew W Becker,et al.  Potential for Satellite Remote Sensing of Ground Water , 2006, Ground water.

[184]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[185]  S. P. Neuman,et al.  Sensitivity analysis and assessment of prior model probabilities in MLBMA with application to unsaturated fractured tuff , 2005 .

[186]  Christine A. Shoemaker,et al.  Comparison of function approximation, heuristic, and derivative‐based methods for automatic calibration of computationally expensive groundwater bioremediation models , 2005 .

[187]  Stefan Finsterle,et al.  Estimation of field‐scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data , 2005 .

[188]  Wouter Peters,et al.  An improved Kalman Smoother for atmospheric inversions , 2005 .

[189]  J C Refsgaard,et al.  Model uncertainty--parameter uncertainty versus conceptual models. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[190]  Steven M. Gorelick,et al.  Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas , 2005 .

[191]  Shaun Quegan,et al.  Model–data synthesis in terrestrial carbon observation: methods, data requirements and data uncertainty specifications , 2005 .

[192]  J. Bredehoeft The conceptualization model problem—surprise , 2005 .

[193]  Andres Alcolea,et al.  Inverse problem in hydrogeology , 2005 .

[194]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[195]  Yen-Chen Huang,et al.  Parameter estimation for leaky aquifers using the extended Kalman filter, and considering model and data measurement uncertainties , 2005 .

[196]  Jeroen P. van der Sluijs,et al.  A framework for dealing with uncertainty due to model structure error , 2004 .

[197]  Wolfgang Nowak,et al.  Uncertainty and data worth analysis for the hydraulic design of funnel‐and‐gate systems in heterogeneous aquifers , 2004 .

[198]  Marnik Vanclooster,et al.  Measuring the Soil Water Content Profile of a Sandy Soil with an Off‐Ground Monostatic Ground Penetrating Radar , 2004 .

[199]  Wolfgang Kinzelbach,et al.  Using remote sensing to regionalize local precipitation recharge rates obtained from the Chloride Method , 2004 .

[200]  Harrie-Jan Hendricks Franssen,et al.  Joint estimation of transmissivities and recharges—application: stochastic characterization of well capture zones , 2004 .

[201]  W. Nowak,et al.  A modified Levenberg-Marquardt algorithm for quasi-linear geostatistical inversing , 2004 .

[202]  P. Bayer,et al.  Evolutionary algorithms for the optimization of advective control of contaminated aquifer zones , 2004 .

[203]  S. Finsterle,et al.  Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements , 2004 .

[204]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[205]  David E. Culler,et al.  Lessons from a Sensor Network Expedition , 2004, EWSN.

[206]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[207]  Freda Kemp,et al.  An Introduction to Sequential Monte Carlo Methods , 2003 .

[208]  Abhishek Singh,et al.  Uncertainty‐based multiobjective optimization of groundwater remediation design , 2003 .

[209]  Ming Ye,et al.  Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff , 2003 .

[210]  S. P. Neuman,et al.  Maximum likelihood Bayesian averaging of uncertain model predictions , 2003 .

[211]  A. Mantoglou Estimation of heterogeneous aquifer parameters from piezometric data using ridge functions and neural networks , 2003 .

[212]  Dongxiao Zhang,et al.  On importance sampling Monte Carlo approach to uncertainty analysis for flow and transport in porous media , 2003 .

[213]  Madan K. Jha,et al.  Estimation of Aquifer Parameters from Pumping Test Data by Genetic Algorithm Optimization Technique , 2003 .

[214]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..

[215]  Moon Gi Kang,et al.  Super-resolution image reconstruction , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[216]  Justin L. Huntington,et al.  Stochastic capture zone analysis of an arsenic-contaminated well using the generalized likelihood uncertainty estimator (GLUE) methodology , 2003 .

[217]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[218]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[219]  C. H. Leng,et al.  Aquifer parameter identification using the extended Kalman filter , 2003 .

[220]  Frank T.-C. Tsai,et al.  Global‐local optimization for parameter structure identification in three‐dimensional groundwater modeling , 2003 .

[221]  Mark E. Borsuk,et al.  On Monte Carlo methods for Bayesian inference , 2003 .

[222]  Jacob Birk Jensen Parameter and Uncertainty Estimation in Groundwater Modelling , 2003 .

[223]  R. M. Yager,et al.  Simulated ground-water flow in the Hueco Bolson, an alluvial-basin aquifer system near El Paso, Texas , 2003 .

[224]  Marnik Vanclooster,et al.  A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties , 2002 .

[225]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[226]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[227]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[228]  Karim C. Abbaspour,et al.  Estimating unsaturated soil hydraulic parameters using ant colony optimization , 2001 .

[229]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[230]  Keith Beven,et al.  Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: Conditioning on head observations , 2001 .

[231]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[232]  Rune Nordqvist Comparison of parameter estimation design criteria using a solute transport model with matrix diffusion , 2000 .

[233]  H. Wheater,et al.  Uncertainty in groundwater flow and transport modelling—a stochastic analysis of well-protection zones , 2000 .

[234]  L. L. Hamm,et al.  Data fusion modeling for groundwater systems , 2000 .

[235]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[236]  Andrés Sahuquillo,et al.  Joint simulation of transmissivity and storativity fields conditional to steady-state and transient hydraulic head data , 1999 .

[237]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[238]  Arnold Neumaier,et al.  Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..

[239]  Mary C. Hill,et al.  UCODE, a computer code for universal inverse modeling 1 Code available at http://water.usgs.gov/soft , 1999 .

[240]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[241]  M. B. Beck,et al.  Kalman filtering in groundwater flow modelling: problems and prospects , 1998 .

[242]  A. Sahuquillo,et al.  Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory , 1997 .

[243]  Curtis M. Oldenburg,et al.  Linear and Monte Carlo uncertainty analysis for subsurface contaminant transport simulation , 1997 .

[244]  Dani Gamerman,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 1997 .

[245]  D. Oliver,et al.  Markov chain Monte Carlo methods for conditioning a permeability field to pressure data , 1997 .

[246]  G. Evensen,et al.  Data assimilation and inverse methods in terms of a probabilistic formulation , 1996 .

[247]  Jesús Carrera,et al.  Coupled estimation of flow and solute transport parameters , 1996 .

[248]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[249]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[250]  David Draper,et al.  Assessment and Propagation of Model Uncertainty , 2011 .

[251]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[252]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[253]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[254]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[255]  Michael Ghil,et al.  Advanced data assimilation in strongly nonlinear dynamical systems , 1994 .

[256]  N Oreskes,et al.  Verification, Validation, and Confirmation of Numerical Models in the Earth Sciences , 1994, Science.

[257]  John Doherty,et al.  PEST: A Unique Computer Program for Model-independent Parameter Optimisation , 1994 .

[258]  Peter Frykman,et al.  Geostatistical Modeling of Chalk Reservoir Properties in the Dan Field, Danish North Sea , 1994 .

[259]  S. Finsterle ITOUGH2 User's Guide Version 2.2 , 1993 .

[260]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[261]  Keith Beven,et al.  Prophecy, reality and uncertainty in distributed hydrological modelling , 1993 .

[262]  J. Gómez-Hernández,et al.  Joint Sequential Simulation of MultiGaussian Fields , 1993 .

[263]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[264]  Joel Massmann,et al.  Hydrogeological Decision Analysis: 4. The Concept of Data Worth and Its Use in the Development of Site Investigation Strategies , 1992 .

[265]  C. Welty,et al.  A Critical Review of Data on Field-Scale Dispersion in Aquifers , 1992 .

[266]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[267]  John D. Bredehoeft,et al.  Ground-water models cannot be validated , 1992 .

[268]  M. Hill A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional ground-water flow model using nonlinear regression , 1992 .

[269]  P.H.A. Sneath,et al.  DOTDND: a FORTRAN-77 program for showing graphically the confidence or uncertainty in phylogenetic trees , 1991 .

[270]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[271]  Joel Massmann,et al.  Hydrogeological Decision Analysis: 1. A Framework , 1990 .

[272]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[273]  P. Smart,et al.  Applications of remote sensing to groundwater hydrology , 1990 .

[274]  Nien-Sheng Hsu,et al.  Optimum experimental design for parameter identification in groundwater hydrology , 1989 .

[275]  Allan D. Woodbury,et al.  Simultaneous inversion of hydrogeologic and thermal data: 1. Theory and application using hydraulic head data , 1987 .

[276]  C. N. Morris,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[277]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[278]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[279]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[280]  Giansilvio Ponzini,et al.  Identification of aquifer transmissivities: The comparison model method , 1982 .

[281]  Rangasami L. Kashyap,et al.  Optimal Choice of AR and MA Parts in Autoregressive Moving Average Models , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[282]  Franklin W. Schwartz,et al.  mass transport: 2. Analysis of uncertainty in prediction , 1981 .

[283]  Andrew P. Sage,et al.  Estimation theory with applications to communications and control , 1979 .

[284]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[285]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[286]  S. P. Neuman Calibration of distributed parameter groundwater flow models viewed as a multiple‐objective decision process under uncertainty , 1973 .

[287]  Abderrahmane Haddad,et al.  Estimation theory with applications to communications and control , 1972 .

[288]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[289]  Henry Cox,et al.  On the estimation of state variables and parameters for noisy dynamic systems , 1964 .

[290]  H. Rauch Solutions to the linear smoothing problem , 1963 .

[291]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[292]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .