Changes in elevation and mass of Arctic glaciers and ice caps, 2010–2017

[1]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[2]  G. Moholdt,et al.  Spread of Svalbard Glacier Mass Loss to Barents Sea Margins Revealed by CryoSat‐2 , 2020, Journal of Geophysical Research: Earth Surface.

[3]  A. Kääb,et al.  From high friction zone to frontal collapse: dynamics of an ongoing tidewater glacier surge, Negribreen, Svalbard , 2020, Journal of Glaciology.

[4]  S. Swenson,et al.  Continuity of the Mass Loss of the World's Glaciers and Ice Caps From the GRACE and GRACE Follow‐On Missions , 2020, Geophysical Research Letters.

[5]  M. Scaioni,et al.  Extreme Atlantic Hurricane Probability of Occurrence Through the Metastatistical Extreme Value Distribution , 2020, Geophysical Research Letters.

[6]  L. Stearns,et al.  The Possible Transition From Glacial Surge to Ice Stream on Vavilov Ice Cap , 2019, Geophysical Research Letters.

[7]  F. Navarro,et al.  Intra- and inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance , 2019, Journal of Glaciology.

[8]  N. Gourmelen,et al.  Subglacial controls on dynamic thinning at Trinity-Wykeham Glacier, Prince of Wales Ice Field, Canadian Arctic , 2019, International Journal of Remote Sensing.

[9]  Bert Wouters,et al.  Global Glacier Mass Loss During the GRACE Satellite Mission (2002-2016) , 2019, Front. Earth Sci..

[10]  Eric Rignot,et al.  Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018 , 2019, Proceedings of the National Academy of Sciences.

[11]  M. Kirby,et al.  Pacific Southwest United States Holocene Droughts and Pluvials Inferred From Sediment δ18O(calcite) and Grain Size Data (Lake Elsinore, California) , 2019, Front. Earth Sci..

[12]  A. Kääb,et al.  Dynamic vulnerability revealed in the collapse of an Arctic tidewater glacier , 2019, Scientific Reports.

[13]  N. Eckert,et al.  Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016 , 2019, Nature.

[14]  M. R. van den Broeke,et al.  Atmospheric forcing of rapid marine-terminating glacier retreat in the Canadian Arctic Archipelago , 2019, Science Advances.

[15]  M. Huss,et al.  A consensus estimate for the ice thickness distribution of all glaciers on Earth , 2019, Nature Geoscience.

[16]  L. Stearns,et al.  Massive destabilization of an Arctic ice cap , 2018, Earth and Planetary Science Letters.

[17]  X. Fettweis,et al.  Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet , 2018, The Cryosphere.

[18]  Isabella Velicogna,et al.  Mass Balance of Novaya Zemlya Archipelago, Russian High Arctic, Using Time-Variable Gravity from GRACE and Altimetry Data from ICESat and CryoSat-2 , 2018, Remote. Sens..

[19]  Yueng-Djern Lenn,et al.  Observed Atlantification of the Barents Sea Causes the Polar Front to Limit the Expansion of Winter Sea Ice , 2018, Journal of Physical Oceanography.

[20]  P. Christoffersen,et al.  Linear response of east Greenland’s tidewater glaciers to ocean/atmosphere warming , 2018, Proceedings of the National Academy of Sciences.

[21]  R. Ingvaldsen,et al.  Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import , 2018, Nature Climate Change.

[22]  L. Connell The Regional and the Global , 2018, Oxford Scholarship Online.

[23]  N. Gourmelen,et al.  Accelerating glacier mass loss on Franz Josef Land, Russian Arctic , 2018, Remote Sensing of Environment.

[24]  Bert Wouters,et al.  Six Decades of Glacial Mass Loss in the Canadian Arctic Archipelago , 2018, Journal of Geophysical Research: Earth Surface.

[25]  Mark R. Drinkwater,et al.  Heterogeneous and rapid ice loss over the Patagonian Ice Fields revealed by CryoSat-2 swath radar altimetry , 2018, Remote Sensing of Environment.

[26]  J. Stroeve,et al.  Seasonal and Regional Manifestation of Arctic Sea Ice Loss , 2018, Journal of Climate.

[27]  M. Sharp,et al.  Influence of recent warming and ice dynamics on glacier surface elevations in the Canadian High Arctic, 1995–2014 , 2018, Journal of Glaciology.

[28]  Neil L. Rose,et al.  Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years , 2018, Nature.

[29]  H. Stern,et al.  Variability of Arctic Sea Ice Thickness Using PIOMAS and the CESM Large Ensemble , 2018 .

[30]  T. Schneider,et al.  Atmospheric Dynamics Feedback: Concept, Simulations, and Climate Implications , 2017 .

[31]  A. Muir,et al.  CryoSat-2 swath interferometric altimetry for mapping ice elevation and elevation change , 2017, Advances in Space Research.

[32]  Tazio Strozzi,et al.  Circum-Arctic Changes in the Flow of Glaciers and Ice Caps from Satellite SAR Data between the 1990s and 2017 , 2017, Remote. Sens..

[33]  Rebecca Killick,et al.  Exceptional retreat of Novaya Zemlya's marine-terminating outlet glaciers between 2000 and 2013 , 2017 .

[34]  M. Byrne Atmospheric Dynamics Feedback: Concept and Simulations , 2017 .

[35]  Torsten Kanzow,et al.  Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean , 2017, Science.

[36]  Eric Rignot,et al.  Mass budget of the glaciers and ice caps of the Queen Elizabeth Islands, Canada, from 1991 to 2015 , 2017 .

[37]  A. Shepherd,et al.  Surface elevation change and mass balance of Icelandic ice caps derived from swath mode CryoSat‐2 altimetry , 2016 .

[38]  A. Robel Thinning sea ice weakens buttressing force of iceberg mélange and promotes calving , 2016, Nature Communications.

[39]  A. Gardner,et al.  Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet , 2016 .

[40]  Timothy H. Dixon,et al.  Corrigendum: Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation , 2016, Nature Communications.

[41]  Tazio Strozzi,et al.  Frontal destabilization of Stonebreen, Edgeøya, Svalbard , 2016 .

[42]  X. Fettweis,et al.  Northeast sector of the Greenland Ice Sheet to undergo the greatest inland expansion of supraglacial lakes during the 21st century , 2016 .

[43]  F. Navarro,et al.  Monte Carlo modelling projects the loss of most land-terminating glaciers on Svalbard in the 21st century under RCP 8.5 forcing , 2016 .

[44]  Jiping Xie,et al.  Quality assessment of the TOPAZ4 reanalysis in the Arctic over the period 1991–2013 , 2016 .

[45]  N. Gourmelen,et al.  Four‐decade record of pervasive grounding line retreat along the Bellingshausen margin of West Antarctica , 2016 .

[46]  D. Goldberg,et al.  Scalings for Submarine Melting at Tidewater Glaciers from Buoyant Plume Theory , 2016 .

[47]  Matthew E. Pritchard,et al.  Recent changes in glacier velocities and thinning at Novaya Zemlya , 2016 .

[48]  Matthew E. Pritchard,et al.  Outlet glacier response to the 2012 collapse of the Matusevich Ice Shelf, Severnaya Zemlya, Russian Arctic , 2015 .

[49]  K. Langley,et al.  CryoSat-2 delivers monthly and inter-annual surface elevation change for Arctic ice caps , 2015 .

[50]  Andreas Kääb,et al.  Glacier-surge mechanisms promoted by a hydro-thermodynamic feedback to summer melt , 2015 .

[51]  X. Fettweis,et al.  Rapid dynamic activation of a marine‐based Arctic ice cap , 2014 .

[52]  J. Wallace,et al.  Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland , 2014, Nature.

[53]  Axel Schweiger,et al.  Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic , 2014 .

[54]  R. Cullen,et al.  Interferometric swath processing of Cryosat data for glacial ice topography , 2013 .

[55]  R. Forsberg,et al.  Mass changes in Arctic ice caps and glaciers: implications of regionalizing elevation changes , 2013 .

[56]  Myoung-Jong Noh,et al.  An improved mass budget for the Greenland ice sheet , 2013 .

[57]  M. Huss Density assumptions for converting geodetic glacier volume change to mass change , 2013 .

[58]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[59]  F. Pattyn,et al.  Future sea-level rise from Greenland’s main outlet glaciers in a warming climate , 2013, Nature.

[60]  Bert Wouters,et al.  Accelerated contributions of Canada's Baffin and Bylot Island glaciers to sea level rise over the past half century , 2012 .

[61]  Bert Wouters,et al.  Recent mass changes of glaciers in the Russian High Arctic , 2012 .

[62]  Ian M. Howat,et al.  Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade , 2011, Proceedings of the National Academy of Sciences.

[63]  Carsten Braun,et al.  Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago , 2011, Nature.

[64]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[65]  Christopher Nuth,et al.  Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry , 2010 .

[66]  S. Freitas,et al.  Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil , 2010 .

[67]  W. Landman Climate change 2007: the physical science basis , 2010 .

[68]  Andreas Kääb,et al.  Svalbard glacier elevation changes and contribution to sea level rise , 2010 .

[69]  Drew T. Shindell,et al.  Climate response to regional radiative forcing during the twentieth century , 2009 .

[70]  A. Gardner,et al.  Influence of the Arctic Circumpolar Vortex on the Mass Balance of Canadian High Arctic Glaciers , 2007 .

[71]  S. Forman,et al.  Changes in glacier extent on north Novaya Zemlya in the twentieth century , 2001 .

[72]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[73]  J. C. Comiso,et al.  Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3 , 2017 .

[74]  K. Kjær,et al.  Changes in Greenland’s peripheral glaciers linked to the North Atlantic Oscillation , 2017, Nature Climate Change.

[75]  Evan Miles,et al.  Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models , 2013, Climate Dynamics.

[76]  G. Moholdt,et al.  Dynamic instability of marine-terminating glacier basins of Academy of Sciences Ice Cap, Russian High Arctic , 2012, Annals of Glaciology.

[77]  A. Adcroft,et al.  Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model , 2010 .

[78]  Jon Ove Hagen,et al.  Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes , 2009 .

[79]  L. Phalippou,et al.  CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields ☆ , 2006 .

[80]  J. Hagen,et al.  Mass balance of arctic glaciers , 1996 .