Multi-label borderline oversampling technique

[1]  Han Zhang,et al.  Multiple kernel learning for label relation and class imbalance in multi-label learning , 2022, Inf. Sci..

[2]  Xibei Yang,et al.  Instance weighted SMOTE by indirectly exploring the data distribution , 2022, Knowl. Based Syst..

[3]  Wonkeun Jo,et al.  OBGAN: Minority oversampling near borderline with generative adversarial networks , 2022, Expert Syst. Appl..

[4]  Mario Giacobini,et al.  A review of methods for imbalanced multi-label classification , 2021, Pattern Recognit..

[5]  Nitin Kumar Mishra,et al.  Feature construction and smote-based imbalance handling for multi-label learning , 2021, Inf. Sci..

[6]  Yao Hu,et al.  NI-MWMOTE: An improving noise-immunity majority weighted minority oversampling technique for imbalanced classification problems , 2020, Expert Syst. Appl..

[7]  Shang Gao,et al.  Adaptive Decision Threshold-Based Extreme Learning Machine for Classifying Imbalanced Multi-label Data , 2020, Neural Processing Letters.

[8]  Qi Wang,et al.  Boosting label weighted extreme learning machine for classifying multi-label imbalanced data , 2020, Neurocomputing.

[9]  Mansoor Zolghadri Jahromi,et al.  A generalized weighted distance k-Nearest Neighbor for multi-label problems , 2020, Pattern Recognit..

[10]  Bin Liu,et al.  Multi-Label Sampling based on Local Label Imbalance , 2020, Pattern Recognit..

[11]  Yandre M. G. Costa,et al.  MLTL: A multi-label approach for the Tomek Link undersampling algorithm , 2020, Neurocomputing.

[12]  Bin Liu,et al.  Dealing with class imbalance in classifier chains via random undersampling , 2020, Knowl. Based Syst..

[13]  Sarbani Palit,et al.  Reverse-nearest neighborhood based oversampling for imbalanced, multi-label datasets , 2019, Pattern Recognit. Lett..

[14]  Chong Ho Lee,et al.  Addressing class-imbalance in multi-label learning via two-stage multi-label hypernetwork , 2017, Neurocomputing.

[15]  Francisco Charte,et al.  Dealing with Difficult Minority Labels in Imbalanced Mutilabel Data Sets , 2017, Neurocomputing.

[16]  Francisco Charte,et al.  Tackling Multilabel Imbalance through Label Decoupling and Data Resampling Hybridization , 2017, Neurocomputing.

[17]  Dimitris N. Metaxas,et al.  Addressing Imbalance in Multi-Label Classification Using Structured Hellinger Forests , 2017, AAAI.

[18]  Dazhe Zhao,et al.  Cost Sensitive Ranking Support Vector Machine for Multi-label Data Learning , 2016, HIS.

[19]  Francisco Charte,et al.  MLSMOTE: Approaching imbalanced multilabel learning through synthetic instance generation , 2015, Knowl. Based Syst..

[20]  Francisco Charte,et al.  Addressing imbalance in multilabel classification: Measures and random resampling algorithms , 2015, Neurocomputing.

[21]  Min-Ling Zhang,et al.  Towards Class-Imbalance Aware Multi-Label Learning , 2015, IEEE Transactions on Cybernetics.

[22]  Francesca Mangili,et al.  Should We Really Use Post-Hoc Tests Based on Mean-Ranks? , 2015, J. Mach. Learn. Res..

[23]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[24]  K. Murase,et al.  MWMOTE--Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning , 2014, IEEE Transactions on Knowledge and Data Engineering.

[25]  A. J. Rivera,et al.  A First Approach to Deal with Imbalance in Multi-label Datasets , 2013, HAIS.

[26]  Josef Kittler,et al.  Inverse random under sampling for class imbalance problem and its application to multi-label classification , 2012, Pattern Recognit..

[27]  Saso Dzeroski,et al.  An extensive experimental comparison of methods for multi-label learning , 2012, Pattern Recognit..

[28]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[29]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[30]  Hien M. Nguyen,et al.  Borderline over-sampling for imbalanced data classification , 2009, Int. J. Knowl. Eng. Soft Data Paradigms.

[31]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[32]  Eyke Hüllermeier,et al.  Combining instance-based learning and logistic regression for multilabel classification , 2009, Machine Learning.

[33]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[34]  Min-Ling Zhang,et al.  Ml-rbf: RBF Neural Networks for Multi-Label Learning , 2009, Neural Processing Letters.

[35]  Eyke Hüllermeier,et al.  Multilabel classification via calibrated label ranking , 2008, Machine Learning.

[36]  Eyke Hüllermeier,et al.  Label ranking by learning pairwise preferences , 2008, Artif. Intell..

[37]  Haibo He,et al.  ADASYN: Adaptive synthetic sampling approach for imbalanced learning , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[38]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[39]  Hui Han,et al.  Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning , 2005, ICIC.

[40]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[41]  Amanda Clare,et al.  Knowledge Discovery in Multi-label Phenotype Data , 2001, PKDD.

[42]  Jason Weston,et al.  A kernel method for multi-labelled classification , 2001, NIPS.

[43]  Grigorios Tsoumakas,et al.  Ieee Transactions on Knowledge and Data Engineering Random K-labelsets for Multi-label Classification , 2022 .