A Performance Evaluation of Volumetric 3D Interest Point Detectors

This paper presents the first performance evaluation of interest points on scalar volumetric data. Such data encodes 3D shape, a fundamental property of objects. The use of another such property, texture (i.e. 2D surface colouration), or appearance, for object detection, recognition and registration has been well studied; 3D shape less so. However, the increasing prevalence of 3D shape acquisition techniques and the diminishing returns to be had from appearance alone have seen a surge in 3D shape-based methods. In this work, we investigate the performance of several state of the art interest points detectors in volumetric data, in terms of repeatability, number and nature of interest points. Such methods form the first step in many shape-based applications. Our detailed comparison, with both quantitative and qualitative measures on synthetic and real 3D data, both point-based and volumetric, aids readers in selecting a method suitable for their application.

[1]  K. S. Pedersen,et al.  On Recall Rate of Interest Point Detectors , 2010 .

[2]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[3]  Przemyslaw Glomb,et al.  Detection of Interest Points on 3D Data: Extending the Harris Operator , 2009, Computer Recognition Systems 3.

[4]  Ioannis Patras,et al.  The fast-3D spatio-temporal interest region detector , 2009, 2009 10th Workshop on Image Analysis for Multimedia Interactive Services.

[5]  Luc Van Gool,et al.  Exemplar-based Action Recognition in Video , 2009, BMVC.

[6]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[7]  Ivan Laptev,et al.  A Distance Measure and a Feature Likelihood Map Concept for Scale-Invariant Model Matching , 2003, International Journal of Computer Vision.

[8]  Björn Stenger,et al.  A new distance for scale-invariant 3D shape recognition and registration , 2011, 2011 International Conference on Computer Vision.

[9]  Najla Megherbi Bouallagu,et al.  Object Recognition using 3D SIFT in Complex CT Volumes , 2010, BMVC.

[10]  Ivan Laptev,et al.  On Space-Time Interest Points , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[11]  Jonathan T. Barron,et al.  A category-level 3-D object dataset: Putting the Kinect to work , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[12]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[13]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Antonio Criminisi,et al.  Regression Forests for Efficient Anatomy Detection and Localization in CT Studies , 2010, MCV.

[16]  Dima Damen,et al.  Proceedings of the British Machine Vision Conference , 2014, BMVC 2014.

[17]  Federico Tombari,et al.  Performance Evaluation of 3D Keypoint Detectors , 2011, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission.

[18]  Carlos Hernández,et al.  Video-based, real-time multi-view stereo , 2011, Image Vis. Comput..

[19]  Robert B. Fisher Modelling Second-Order Volumetric Features , 1987, Alvey Vision Conference.

[20]  Kevin W. Bowyer,et al.  Comparison of Edge Detectors Using an Object Recognition Task , 1999, CVPR.

[21]  P. K. Rajan,et al.  Evaluation of corner detection algorithms , 1989, [1989] Proceedings. The Twenty-First Southeastern Symposium on System Theory.

[22]  Luc Van Gool,et al.  Fast scale invariant feature detection and matching on programmable graphics hardware , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[23]  Hayko Riemenschneider,et al.  Bag of Optical Flow Volumes for Image Sequence Recognition , 2009, BMVC.

[24]  Sean Dougherty,et al.  Edge detector evaluation using empirical ROC curves , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[25]  R Kikinis,et al.  Detection of point landmarks in multidimensional tensor data , 2001, Signal Process..

[26]  Martial Hebert,et al.  Multi-scale interest regions from unorganized point clouds , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[27]  W. James MacLean,et al.  Real-Time Extraction of Maximally Stable Extremal Regions on an FPGA , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[28]  Tien-Tsin Wong,et al.  Volumetric Ultrasound Panorama Based on 3D SIFT , 2008, MICCAI.

[29]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[30]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[31]  Roger Mohr,et al.  Accuracy in image measure , 1994, Other Conferences.

[32]  Georg Langs,et al.  Medical Computer Vision , 2011 .

[33]  Klas Nordberg,et al.  Point-of-interest detection for range data , 2008, 2008 19th International Conference on Pattern Recognition.

[34]  Yuichiro Shibata,et al.  Pattern Compression of FAST Corner Detection for Efficient Hardware Implementation , 2011, 2011 21st International Conference on Field Programmable Logic and Applications.

[35]  Thomas B. Moeslund,et al.  Long-Term Occupancy Analysis Using Graph-Based Optimisation in Thermal Imagery , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[37]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[38]  Horst Bischof,et al.  Localization of 3D Anatomical Structures Using Random Forests and Discrete Optimization , 2010, MCV.

[39]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[40]  Luc Van Gool,et al.  Class-specific 3D localization using constellations of object parts , 2011, BMVC.

[41]  Afzal Godil,et al.  Evaluation of 3D Interest Point Detection Techniques , 2011, 3DOR@Eurographics.

[42]  Tae-Kyun Kim,et al.  Real-time Action Recognition by Spatiotemporal Semantic and Structural Forests , 2010, BMVC.

[43]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[44]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[45]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[46]  Geoffrey E. Hinton,et al.  Learning Generative Texture Models with extended Fields-of-Experts , 2009, BMVC.

[47]  Rafeef Abugharbieh,et al.  3D ultrasound volume stitching using phase symmetry and harris corner detection for orthopaedic applications , 2010, Medical Imaging.

[48]  Jonathan T. Barron,et al.  A category-level 3-D object dataset: Putting the Kinect to work , 2011, ICCV Workshops.

[49]  Andrew R. Willis,et al.  An algebraic model for fast corner detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[50]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[51]  Robert Laganière,et al.  Performance Evaluation of Scale-Interpolated Hessian-Laplace and Haar Descriptors for Feature Matching , 2007, 14th International Conference on Image Analysis and Processing (ICIAP 2007).

[52]  Horst Bischof,et al.  3D Segmentation by Maximally Stable Volumes (MSVs) , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[53]  Luc Van Gool,et al.  An Efficient Dense and Scale-Invariant Spatio-Temporal Interest Point Detector , 2008, ECCV.

[54]  Yakup Genc,et al.  GPU-based Video Feature Tracking And Matching , 2006 .

[55]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[56]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[57]  Waldemar Celes Filho,et al.  Accelerated Corner-Detector Algorithms , 2008, BMVC.

[58]  Sudeep Sarkar,et al.  Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[59]  Aaron Heller,et al.  An experimental evaluation of projective invariants , 1992 .

[60]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[61]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Luc Van Gool,et al.  Hough Transform and 3D SURF for Robust Three Dimensional Classification , 2010, ECCV.

[63]  Matthew A. Brown,et al.  Unsupervised 3D object recognition and reconstruction in unordered datasets , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[64]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[65]  Dieter Fox,et al.  Object Recognition in 3D Point Clouds Using Web Data and Domain Adaptation , 2010, Int. J. Robotics Res..

[66]  Reinhard Klein,et al.  Correspondences between Salient Points on 3D Shapes , 2006 .

[67]  Darius Burschka,et al.  An Efficient RANSAC for 3D Object Recognition in Noisy and Occluded Scenes , 2010, ACCV.

[68]  Benjamin Bustos,et al.  Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes , 2011, The Visual Computer.