8: Precambrian geodynamics and ore formation: The Fennoscandian Shield

Abstract Compared with present-day global plate tectonics, Archaean and Palaeoproterozoic plate tectonics may have involved faster moving, hotter plates that accumulated less sediment and contained a thinner section of lithospheric mantle. This scenario also fits with the complex geodynamic evolution of the Fennoscandian Shield from 2.06 to 1.78 Ga when rapid accretion of island arcs and several microcontinent–continent collisions in a complex array of orogens was manifested in short-lived but intense orogenies involving voluminous magmatism. With a few exceptions, all major ore deposits formed in specific tectonic settings between 2.06 and 1.78 Ga and thus a strong geodynamic control on ore deposit formation is suggested. All orogenic gold deposits formed syn- to post-peak metamorphism and their timing reflects the orogenic younging of the shield towards the SW and west. Most orogenic gold deposits formed during periods of crustal shortening with peaks at 2.72 to 2.67, 1.90 to 1.86 and 1.85 to 1.79 Ga. The ca. 2.5 to 2.4 Ga Ni–Cu ± PGE deposits formed both as part of layered igneous complexes and associated with mafic volcanism, in basins formed during rifting of the Archaean craton at ca. 2.5 to 2.4 Ga. Svecokarelian ca. 1.89 to 1.88 Ga Ni–Cu deposits are related to mafic–ultramafic rocks intruded along linear belts at the accretionary margins of microcratons. All major VMS deposits in the Fennoscandian Shield formed between 1.97 and 1.88 Ga, in extensional settings, prior to basin inversion and accretion. The oldest “Cyprus-type” deposits were obducted onto the Archaean continent during the onset of convergence. The Pyhasalmi VMS deposits formed at 1.93 to 1.91 Ga in primitive, bimodal arc complexes during extension of the arc. In contrast, the Skellefte VMS deposits are 20 to 30 million years younger and formed in a strongly extensional intra-arc region that developed on continental or mature arc crust. Deposits in the Bergslagen–Uusimaa belt are similar in age to the Skellefte deposits and formed in a microcraton that collided with the Karelian craton at ca. 1.88 to 1.87 Ga. The Bergslagen–Uusimaa belt is interpreted as an intra-continental, or continental margin back-arc, extensional region developed on older continental crust. Iron oxide–copper–gold (IOCG) deposits are diverse in style. At least the oldest mineralizing stages, at ca. 1.88 Ga, are coeval with calc-alkaline to monzonitic magmatism and coeval and possibly cogenetic subaerial volcanism more akin to continental arcs or to magmatic arcs inboard of the active subduction zone. Younger mineralization of similar style took place when S-type magmatism occurred at ca. 1.80 to 1.77 Ga during cratonization distal to the active N–S-trending subduction zone in the west. Possibly, interaction of magmatic fluids with evaporitic sequences in older rift sequences was important for ore formation. Finally, the large volumes of anorthositic magmas that characterize the Sveconorwegian Orogeny formed a major concentration of Ti in the SW part of the Sveconorwegian orogenic belt under granulite facies conditions, about 40 million years after the last regional deformation of the Sveconorwegian Orogeny, between ca. 930 and 920 Ma.

[1]  P. Peltonen,et al.  Petrogenesis of ultramafic rocks in the Vammala Nickel Belt: Implications for crustal evolution of the early Proterozoic Svecofennian arc terrane , 1995 .

[2]  R. Cliff,et al.  Sm−Nd and Pb isotopic study of mafic rocks associated with early Proterozoic continental rifting: the Peröpohja schist belt in northern Finland , 1990 .

[3]  T. Andersen,et al.  A fluid inclusion and stable isotope study of the Proterozoic Bidjovagge Au-Cu deposit, Finnmark, northern Norway , 1994 .

[4]  P. Nurmi,et al.  A Review of Gold Mineralization Styles in Finland , 2003 .

[5]  Y. Amelin,et al.  UPb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Paleoproterozoic continental rifting , 1995 .

[6]  E. M. Klein,et al.  Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge: Implications of modern ridge subduction systems for the Archean , 1996 .

[7]  M. Vaasjoki,et al.  Radiometric ages and other isotopic data bearing on the evolution of Archaean crust and ores in the Kuhmo-Suomussalmi area, eastern Finland , 1999 .

[8]  M. Fram,et al.  Pressure effects, kinetics, and rheology of anorthositic and related magmas , 1993 .

[9]  T. Grove,et al.  The production of Barberton komatiites in an Archean Subduction Zone , 2001 .

[10]  T. Skiöld,et al.  Age of deformation episodes in the Palaeoproterozoic domain of northern Sweden, and evidence for a pre-1.9 Ga crustal layer , 2001 .

[11]  H. Papunen,et al.  The Kemi stratiform chromitite deposit, northern Finland , 1989 .

[12]  F. Albarède,et al.  Crustal growth in West Africa at 2.1 Ga , 1992 .

[13]  P. Forterre,et al.  Evolution of the Archaea. , 2002, Theoretical population biology.

[14]  A. Berthelsen,et al.  1.9-1.8 Ga old strike-slip megashears in the Baltic Shield, and their plate tectonic implications , 1986 .

[15]  A. Simeonov,et al.  The Zinkgruvan ore deposit, south-central Sweden; a Proterozoic, proximal Zn-Pb-Ag deposit in distal volcanic facies , 1989 .

[16]  P. Eriksson The Precambrian earth : tempos and events , 2004 .

[17]  C. Broman,et al.  Magmatic-hydrothermal fluids in the Pahtohavare Cu-Au deposit in greenstone at Kiruna, Sweden , 1996 .

[18]  U. Hansen,et al.  Structural evolution of the Precambrian Bjerkreim-Soknda l intrusion, South Norway , 1994 .

[19]  H. Huppert,et al.  Emplacement and cooling of komatiite lavas , 1984, Nature.

[20]  J. Nystroem,et al.  Magmatic Features of Iron Ores of the Kiruna Type in Chile and Sweden: Ore Textures and Magnetite Geochemistry , 1994 .

[21]  J. Morgan,et al.  Re-Os systematics of early proterozoic ferropicrites, Pechenga Complex, northwestern Russia: Evidence for ancient 187Os-enriched plumes , 1997 .

[22]  R. Stallard,et al.  The history of a continent from UPb ages of zircons from Orinoco River sand and SmNd isotopes in Orinoco basin river sediments , 1997 .

[23]  D. Krstić,et al.  New Isotopic data from davidites and sulfides in the bidjovagge gold-copper deposit, Finnmark, Northern Norway , 1990 .

[24]  R. Larsen,et al.  Re–Os isotopic evidence for a lower crustal origin of massif-type anorthosites , 2000, Nature.

[25]  D. Jacob,et al.  Evolution of the Archaean crust by delamination and shallow subduction , 2003, Nature.

[26]  P. Persson,et al.  U-Pb ages of plutonic and volcanic rocks in the Svecofennian Bothnian Basin, central Sweden, and their implications for the Palaeoproterozoic evolution of the Basin , 1998 .

[27]  R. Romer,et al.  Geochronology of the Kiruna iron ores and hydrothermal alterations , 1994 .

[28]  J. Duchesne LIQUID ILMENITE OR LIQUIDUS ILMENITE: A COMMENT ON THE NATURE OF ILMENITE VEIN DEPOSITS , 1996 .

[29]  P. Ward Early proterozoic deposition and deformation at the Karelian craton margin in southeastern Finland , 1987 .

[30]  B. Öhlander,et al.  Crustal reflectivity near the Archaean-Proterozoic boundary in northern Sweden and implications for the tectonic evolution of the area , 2002 .

[31]  T. Niiranen,et al.  General geology, alteration, and iron deposits in the Palaeoproterozoic Misi region, northern Finland , 2003 .

[32]  M. Toplis,et al.  An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium , 2002 .

[33]  R. E. Hill Komatiite volcanology, volcanological setting and primary geochemical properties of komatiite-associated nickel deposits , 2001, Geochemistry: Exploration, Environment, Analysis.

[34]  K. Sundblad A genetic reinterpretation of the Falun and Åmmeberg ore types, Bergslagen, Sweden , 1994 .

[35]  M. Barton,et al.  Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization , 1996 .

[36]  E. Hanski,et al.  Pechenga ferropicrites and other early Proterozoic picrites in the eastern part of the Baltic Shield , 1989 .

[37]  U. Bergström,et al.  Metallogeny and tectonic evolution of the Early Proterozoic Skellefte district, northern Sweden , 1992 .

[38]  P. Eilu,et al.  8-1: Fennoscandian shield–proterozoic VMS deposits , 2005 .

[39]  G. Gaál Proterozoic tectonic evolution and late Svecokarelian plate deformation of the Central Baltic Shield , 1982 .

[40]  K. Sundblad Metallogeny of Gold in the Precambrian of Northern Europe , 2003 .

[41]  K. Blake,et al.  The Lightning Creek Sill Complex, Cloncurry District, Northwest Queensland: A Source of Fluids for Fe Oxide Cu-Au Mineralization and Sodic-Calcic Alteration , 2000 .

[42]  J. Scoates,et al.  Orogenic to Post‐Orogenic Origin For the 1.76 Ga Horse Creek Anorthosite Complex, Wyoming, Usa , 1997, The Journal of Geology.

[43]  A. Nord,et al.  A sulphur and strontium isotope study of the Aitik copper ore, northern Sweden , 1986 .

[44]  B. Charlier Fennoscandian Shield – Rogaland Anorthosite Province. Tellnes ilmenite deposit: Lat. 58°20’ N, Long. 6°25’ E , 2005 .

[45]  P. Eilu,et al.  8-2: Fennoscandian shield — Orogenic gold deposits , 2005 .

[46]  N. Oreskes,et al.  Geological characteristics and tectonic setting of proterozoic iron oxide (CuUAuREE) deposits , 1992 .

[47]  K. Condie Archean crustal evolution , 1994 .

[48]  P. Peltonen Chapter 9 Svecofennian mafic-ultramafic intrusions , 2005 .

[49]  K. Billström,et al.  Age and provenance of host rocks and ores in the Paleoproterozoic Skellefte District, northern Sweden , 1996 .

[50]  J. Longhi,et al.  Experimental study of a jotunite (hypersthene monzodiorite): constraints on the parent magma composition and crystallization conditions (P, T, fO2) of the Bjerkreim-Sokndal layered intrusion (Norway) , 1994 .

[51]  I. Pashkevich,et al.  The 1.80-1.74-Ga gabbro-anorthosite-rapakivi Korosten Pluton in the Ukrainian Shield: a 3-D geophysical reconstruction of deep structure , 2004 .

[52]  G. Gaál,et al.  An Outline of the precambrian evolution of the baltic shield , 1987 .

[53]  P. Weihed,et al.  Structural Evolution of the Björkdal Gold Deposit, Skellefte District, Northern Sweden: Implications for Early Proterozoic Mesothermal Gold in the Late Stage of the Svecokarelian Orogen , 2003 .

[54]  J. Duchesne,et al.  Le magma parental du lopolithe de Bjerkreim-Sokndal (Norvège méridionale) , 1988 .

[55]  F. Albarède,et al.  A major 2.1 Ga event of mafic magmatism in west Africa: An Early stage of crustal accretion , 1990 .

[56]  K. Billström,et al.  Relationship between 1.90–1.85 Ga accretionary processes and 1.82–1.80 Ga oblique subduction at the Karelian craton margin, Fennoscandian Shield , 2002 .

[57]  U. Schärer,et al.  The short duration and anorogenic character of anorthosite magmatism: U-Pb dating of the Rogaland complex, Norway , 1996 .

[58]  J. Miller,et al.  The History of 0 , 2004 .

[59]  O. Inkinen Copper, zinc, and uranium occurrences at Pahtavuoma in the Kittila greenstone complex, northern Finland , 1979 .

[60]  M. Hannington,et al.  Volcanic Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings , 1997 .

[61]  Rudyard Frietsgh The origin of the Kiruna iron ores , 1973 .

[62]  A. Korja,et al.  Chapter 11 Paleoproterozoic tectonic evolution , 2005 .

[63]  H. Papunen,et al.  Exceptionally Cr-rich basalts in the komatiitic volcanic association of the Archaean Kuhmo greenstone belt, eastern Finland , 2000 .

[64]  A. J. Naldrett World-class Ni-Cu-PGE deposits: key factors in their genesis , 1999 .

[65]  G. Gaál Tectonic styles of Early Proterozoic ore deposition in the Fennoscandian Shield , 1990 .

[66]  T. Andersen,et al.  Fluid evolution and AuCu genesis along a shear zone: a regional fluid inclusion study of shear zone-hosted alteration and gold and copper mineralization in the Kautokeino greenstone belt, Finnmark, Norway , 1993 .

[67]  S. Barnes,et al.  Ti-rich komatiites from northern Norway , 1990 .

[68]  John V. Smith,et al.  Emplacement and implications of peridotite‐hosted leucocratic dykes, Vammala Mine, Finland , 1995 .

[69]  D. Groves,et al.  The Late Archaean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity , 1998 .

[70]  M. Fram,et al.  Some Phase Equilibrium Constraints on the Origin of Proterozoic (Massif) Anorthosites and Related Rocks , 1999 .

[71]  Geologian tutkimuskeskus,et al.  Geological Survey of Finland special paper , 1987 .

[72]  P. Heikkinen,et al.  Evidence for early Proterozoic plate tectonics from seismic reflection profiles in the Baltic shield , 1990, Nature.

[73]  K. Card A review of the Superior Province of the Canadian Shield, a product of Archean accretion , 1990 .

[74]  M. ño,et al.  Phase equilibria of dikes associated with Proterozoic anorthosite complexes , 2007 .

[75]  M. Hamilton,et al.  Petrogenesis of a Mid-Proterozoic Anorthosite-Mangerite-Charnockite-Granite (AMCG) Complex: Isotopic and Chemical Evidence from the Nain Plutonic Suite , 1994, The Journal of Geology.

[76]  G. M. Brown,et al.  Layered Igneous Rocks , 1967 .

[77]  A. Galley,et al.  Evolution of the Paleoproterozoic Snow Lake arc assemblage and geodynamic setting for associated volcanic-hosted massive sulphide deposits, Flin Flon Belt, Manitoba, Canada , 1999 .

[78]  S. Barnes,et al.  THE COMPOSITION AND MODE OF FORMATION OF THE PECHENGA NICKEL DEPOSITS, KOLA PENINSULA, NORTHWESTERN RUSSIA , 2001 .

[79]  P. Rastas,et al.  U-Pb ISOTOPIC STUDIES ON THE KITTILÄ GREENSTONE AREA , CENTRAL LAPLAND , FINLAND by , 2002 .

[80]  P. Peltonen Metamorphic olivine in pictritic metavolcanics from southern Finland , 1990 .

[81]  R. Gorbatschev,et al.  Frontiers in the Baltic Shield , 1993 .

[82]  B. Windley,et al.  Archean Plate Tectonics: Constraints and Inferences , 1982, The Journal of Geology.

[83]  M. Poutiainen,et al.  Hydrothermal fluid evolution of the Paleoproterozoic Kutemajarvi gold telluride deposit, Southwest Finland , 1996 .

[84]  A. Hofmann,et al.  Combined mantle plume-island arc model for the formation of the 2.9 ga sumozero-kenozero greenstone belt, se baltic shield: isotope and trace element constraints , 1999 .

[85]  P. Rastas,et al.  The Palaeoproterozoic Komatiite-Picrite Association of Finnish Lapland , 2001 .

[86]  R. Frietsch,et al.  Early proterozoic Cu(Au) and Fe ore deposits associated with regional NaCl metasomatism in northern Fennoscandia , 1997 .

[87]  R. Allen,et al.  Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden , 1996 .

[88]  E. Husebye,et al.  Tectonic setting of post‐orogenic granites within SW Fennoscandia based on deep seismic and gravity data , 1996 .

[89]  K. Korsman,et al.  THE GGT/SVEKA TRANSECT : STRUCTURE AND EVOLUTION OF THE CONTINENTAL CRUST IN THE PALEOPROTEROZOIC SVECOFENNIAN OROGEN IN FINLAND , 1999 .

[90]  N. Arndt,et al.  Geodynamic and metabolic cycles in the Hadean , 2004 .

[91]  A. Fallick,et al.  2000-Ma sulphide concretions from the `Productive' Formation of the Pechenga Greenstone Belt, NW Russia: genetic history based on morphological and isotopic evidence , 1998 .

[92]  J. V. Auwera,et al.  The Bjerkreim-Sokndal Layered Intrusion, Southwest Norway , 1996 .

[93]  H. Stein,et al.  The north‐eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation , 2002 .

[94]  S. Sarkar Metallogeny related to tectonics of the Proterozoic mobile belts , 1992 .

[95]  U. Bergström,et al.  Geology, tectonic setting, and origin of the Paleoproterozoic Boliden Au-Cu-As deposit, Skellefte District, northern Sweden , 1996 .

[96]  I. Krylov,et al.  Archaean rocks from southeastern Karelia (Karelian granite greenstone terrain) , 1993 .

[97]  H. Huhma U-Pb DATINGS IN THE SODANKYLÄ SCHIST AREA , CENTRAL FINNISH LAPLAND by Jorma Räsänen , 2002 .

[98]  J. Duchesne Fe-Ti deposits in Rogaland anorthosites (South Norway): geochemical characteristics and problems of interpretation , 1999 .

[99]  C. Wanhainen,et al.  The Aitik Cu–Au–Ag deposit in northern Sweden: a product of high salinity fluids , 2003 .

[100]  M. Abzalov,et al.  The Pechenga Ni-Cu deposits, Russia: Data on PGE and Au distribution and sulphur isotope compositions , 1997 .

[101]  W. Vivallo,et al.  Intra-Arc Rifting and Massive Sulphide Mineralization in an Early Proterozoic Volcanic Arc, Skellefte District, Northern Sweden , 1987, Geological Society, London, Special Publications.

[102]  R. Hori,et al.  A model of ocean-crust accretion for the Superior province, Canada , 1993 .

[103]  O. Helovuori Geology of the Pyhasalmi ore deposit, Finland , 1979 .

[104]  N. Arndt Komatiites, kimberlites, and boninites , 2003 .

[105]  M. Hamilton,et al.  Identification of Paleoproterozoic anorthositic and monzonitic rocks in the vicinity of the Mesoproterozoic Nain Plutonic Suite, Labrador: U-Pb evidence , 1998 .

[106]  D. Haughton,et al.  Solubility of Sulfur in Mafic Magmas , 1974 .

[107]  R. Hart,et al.  The Jamestown Ophiolite Complex, Barberton mountain belt: a section through 3.5 Ga oceanic crust , 1987 .

[108]  H. J. Koark Zur Altersstellung und Entstehung der Sulfiderze vom Typus Falun , 1962 .

[109]  Ingmar Lundström Lateral variations in supracrustal geology within the swedish part of the southern svecokarelian volcanic belt , 1987 .

[110]  W. Davis,et al.  Picrite evidence for more Fe in Archean mantle reservoirs , 1999 .

[111]  C. Stanley Mineral deposits : processes to processing , 1989 .

[112]  Olof Martinsson,et al.  Tectonic setting and metallogeny of the Kiruna greenstones , 1997 .

[113]  A. Hallberg The En isen gold deposit , central Sweden 1 . A palaeoproterozoic high-sulphidation epithermal gold mineralization , 2022 .

[114]  N. Arndt,et al.  Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites , 1993 .

[115]  H. Huhma,et al.  Isotopic and geochemical constraints on the evolution of the 1.93-1.79 Ga Svecofennian crust and mantle in Finland , 1997 .

[116]  P. Weihed A review of Palaeoproterozoic intrusive hosted Cu-Au-Fe-oxide deposits in northern Sweden , 2001 .

[117]  S. Larson,et al.  Growth-related 1.85–1.55 Ga magmatism in the Baltic Shield; a review addressing the tectonic characteristics of Svecofennian, TIB 1-related, and Gothian events , 2000 .

[118]  C. Herzberg Depth and degree of melting of komatiites , 1992 .

[119]  A. J. Naldrett,et al.  Magmatic Sulfide Deposits , 1989 .

[120]  A. Philpotts Origin of certain iron-titanium oxide and apatite rocks , 1967 .

[121]  C. Ryan,et al.  The nature of iron oxide-copper-gold ore fluids: fluid inclusion evidence from Norrbotten (Sweden) and the Cloncurry district (Australia) , 2003 .

[122]  A. Hofmann,et al.  Mantle plumes and episodic crustal growth , 1994, Nature.

[123]  T. Skiöld,et al.  Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield , 2001 .

[124]  D. Vaughan Magmatic Sulphides—The Zimbabwe Volume , 1990, Mineralogical Magazine.

[125]  R. Cliff,et al.  Isotope systematics of the Kiruna magnetite ores, Sweden; Part 1, Age of the ore , 1990 .

[126]  J. Liégeois,et al.  The crustal tongue melting model and the origin of massive anorthosites , 1999 .

[127]  H. Havenith,et al.  The deformation of the Egersund–Ogna anorthosite massif, south Norway: finite-element modelling of diapirism , 1999 .

[128]  T. Huhtala The geology and zinc-copper deposits of the Pyhasalmi-Pielavesi District, Finland , 1979 .

[129]  Richard J. Goldfarb,et al.  Orogenic gold deposits : A proposed classification in the context of their crustal distribution and relationship to other gold deposit types , 1998 .

[130]  P. Heikkinen,et al.  Seismic and geoelectric evidence for collisional and extensional events in the Fennoscandian Shield implications for Precambrian crustal evolution , 1993 .

[131]  M. Lehtonen,et al.  The stratigraphy, petrology and geochemistry of the Kittilä greenstone area, northern Finland , 1998 .

[132]  S. Schumm,et al.  Experimental Study of Channel Patterns , 1972 .

[133]  P. Nurmi,et al.  Precambrian geology of Finland : key to the evolution of the fennoscandian shield , 2005 .

[134]  M. Nironen The Svecofennian Orogen: a tectonic model , 1997 .

[135]  P. Weihed,et al.  Setting of Zn-Cu-Au-Ag massive sulfide deposits in the evolution and facies architecture of a 1.9 Ga marine volcanic arc, Skellefte District, Sweden , 1996 .

[136]  D. Groves,et al.  Orogenic gold and geologic time: a global synthesis , 2001 .