Influence of accelerated corrosion on the reinforced cover concrete cracking behavior: experimental and numerical study

This article aims to present both experimental and numerical studies of the corrosion induced cracking pattern evolution of a reinforced concrete sample subjected to accelerated corrosion. The beam was not mechanically loaded. Rebars were intentiostatically corroded using a current density of 100μA/cm² of steel, in a chloride pond and for a 30 day period. Electrochemical tests and visual inspections were carried out in order to characterise the rebar state. Width evolution of the main longitudinal cover crack was measured thanks to ball-extensometer. A numerical modeling of the corroded RC beam has also been realised. The experimental and numerical results are in good agreement confirming the efficiency of the proposed modelling Cet article présente les principaux résultats d’une étude combinant approches expérimentale et numérique appliquées à un essai de corrosion accélérée sur un corps d’épreuve en béton armé. Ces résultats portent sur le suivi et la prédiction de l’évolution de la fissuration du béton sous l’effet de l’expansion des produits de corrosion. L’éprouvette n’a pas été chargée mécaniquement. Les armatures ont été corrodées en imposant un courant de densité de 100μA/cm² d’acier dans une solution saline pendant 30 jours. Des essais de caractérisation électrochimique ont été réalisés puis complétés par des inspections visuelles en vue de décrire l’état de dégradation de l’interface acier/béton. Les résultats de la simulation numérique conduisent à une évaluation satisfaisante de l’évolution de la fissure principale démontrant ainsi la pertinence de la modélisation proposée

[1]  C. Cremona,et al.  Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding , 2010 .

[2]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[3]  Sabine Caré,et al.  Influence of Impressed Current on the Initiation of Damage in Reinforced Mortar Due to Corrosion of Embedded Steel , 2007 .

[4]  Mark G. Stewart,et al.  Corrosion-Induced Cracking: Experimental Data and Predictive Models , 2005 .

[5]  Benjamin Richard,et al.  Thermodynamical admissibility of a set of constitutive equations coupling elasticity, isotropic damage and internal sliding , 2010 .

[6]  Mark G. Stewart,et al.  Corrosion-Induced Cover Cracking: New Test Data and Predictive Models , 2011 .

[7]  Dimitri V. Val,et al.  Experimental and Numerical Investigation of Corrosion-Induced Cover Cracking in Reinforced Concrete Structures , 2009 .

[8]  Y. Berthaud,et al.  Analyse de la fissuration du béton armé en corrosion accélérée , 2007 .

[9]  Benjamin Richard,et al.  A three-dimensional steel/concrete interface model including corrosion effects , 2010 .

[10]  Byung Hwan Oh,et al.  Effects of non-uniform corrosion on the cracking and service life of reinforced concrete structures , 2010 .

[11]  John R. Scully,et al.  Polarization Resistance Method for Determination of Instantaneous Corrosion Rates , 2000 .

[12]  Andrew Chan,et al.  Finite element analysis of the effects of radial expansion of corroded reinforcement , 2006 .

[13]  M. Stern,et al.  Electrochemical Polarization I . A Theoretical Analysis of the Shape of Polarization Curves , 1957 .

[15]  C. Andrade,et al.  Corrosion Characterization of Reinforced Concrete Slabs with Different Devices , 2008 .

[16]  C. Andrade,et al.  Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method , 2004 .