Tidal Venuses: triggering a climate catastrophe via tidal heating.

Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets "Tidal Venuses" and the phenomenon a "tidal greenhouse." Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ). However, these planets are not habitable, as past tidal heating desiccated them, and hence should not be ranked highly for detailed follow-up observations aimed at detecting biosignatures. We simulated the evolution of hypothetical planetary systems in a quasi-continuous parameter distribution and found that we could constrain the history of the system by statistical arguments. Planets orbiting stars with masses<0.3 MSun may be in danger of desiccation via tidal heating. We have applied these concepts to Gl 667C c, a ∼4.5 MEarth planet orbiting a 0.3 MSun star at 0.12 AU. We found that it probably did not lose its water via tidal heating, as orbital stability is unlikely for the high eccentricities required for the tidal greenhouse. As the inner edge of the HZ is defined by the onset of a runaway or moist greenhouse powered by radiation, our results represent a fundamental revision to the HZ for noncircular orbits. In the appendices we review (a) the moist and runaway greenhouses, (b) hydrogen escape, (c) stellar mass-radius and mass-luminosity relations, (d) terrestrial planet mass-radius relations, and (e) linear tidal theories.

[1]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[2]  Marc Ollivier,et al.  Transiting exoplanets from the CoRoT space mission - XXIV. CoRoT-25b and CoRoT-26b: two low-density giant planets , 2013 .

[3]  Avi M. Mandell,et al.  Formation of Earth-like Planets During and After Giant Planet Migration , 2007, astro-ph/0701048.

[4]  Charles F. Yoder,et al.  Astrometric and Geodetic Properties of Earth and the Solar System , 1995 .

[5]  Ignasi Ribas,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[6]  M. Murakami,et al.  Water in Earth's Lower Mantle , 2002, Science.

[7]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[8]  Steven Soter,et al.  Q in the solar system , 1966 .

[9]  Jonas Nycander,et al.  Generation of internal waves in the deep ocean by tides , 2005 .

[10]  C. Hansen,et al.  Volcanic eruption plumes on Io , 1979, Nature.

[11]  S. Rasool Loss of Water from Venus , 1968 .

[12]  O. Grasset,et al.  A STUDY OF THE ACCURACY OF MASS–RADIUS RELATIONSHIPS FOR SILICATE-RICH AND ICE-RICH PLANETS UP TO 100 EARTH MASSES , 2009, 0902.1640.

[13]  R. Greenberg FREQUENCY DEPENDENCE OF TIDAL Q , 2009 .

[14]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[15]  Frederic A. Rasio,et al.  TIDAL EVOLUTION OF CLOSE-IN PLANETS , 2010, 1007.4785.

[16]  H. Hussmann,et al.  Spin-orbit Coupling for Tidally Evolving Super-Earths , 2012, 1209.1580.

[17]  J. Kasting,et al.  Loss of Water from Venus. I. Hydrodynamic Escape of Hydrogen , 1983 .

[18]  Kurt Lambeck,et al.  Tidal dissipation in the oceans: astronomical, geophysical and oceanographic consequences , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  Making other earths: dynamical simulations of terrestrial planet formation and water delivery , 2003, astro-ph/0308159.

[20]  W. Traub,et al.  TRANSITS OF EARTH-LIKE PLANETS , 2009, 0903.3371.

[21]  Arnold Hanslmeier,et al.  The CoRoT space mission : early results Special feature Determining the mass loss limit for close-in exoplanets : what can we learn from transit observations ? , 2009 .

[22]  B. Marty,et al.  Water in the Early Earth , 2006 .

[23]  Jaymie M. Matthews,et al.  A SUPER-EARTH TRANSITING A NAKED-EYE STAR , 2011, 1104.5230.

[24]  D. Queloz,et al.  The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M{⊕}) in a 3-planet system , 2007, 0704.3841.

[25]  K. Aksnes,et al.  Secular Acceleration of Io Derived from Mutual Satellite Events , 2001 .

[26]  S. Hawley,et al.  The Multiple Continuum Components in the White-Light Flare of 16 January 2009 on the dM4.5e Star YZ CMi , 2011, 1109.0837.

[27]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[28]  I. Reid,et al.  in New Light on Dark Stars , 2000 .

[29]  Shinichi Nakajima,et al.  A Study on the “Runaway Greenhouse Effect” with a One-Dimensional Radiative–Convective Equilibrium Model , 1992 .

[30]  J. Laskar,et al.  On the equilibrium rotation of Earth-like extra-solar planets , 2008, 0808.1071.

[31]  K. Heng,et al.  Gliese 581g as a scaled-up version of Earth: atmospheric circulation simulations , 2010, 1010.4719.

[32]  J. Beuzit,et al.  HD 80606 b, a planet on an extremely elongated orbit , 2001, astro-ph/0106256.

[33]  J. Nash,et al.  Internal‐tide energy over topography , 2010 .

[34]  C. Moutou,et al.  The HARPS search for southern extra-solar planets - XXXII. New multi-planet systems in the HARPS volume limited sample: a super-Earth and a Neptune in the habitable zone , 2013, 1301.2741.

[35]  Richard Greenberg,et al.  Tidal Heating of Extrasolar Planets , 2008, 0803.0026.

[36]  Richard Greenberg,et al.  THE HD 40307 PLANETARY SYSTEM: SUPER-EARTHS OR MINI-NEPTUNES? , 2009, 0901.1698.

[37]  Robert M. Haberle,et al.  Simulations of the Atmospheres of Synchronously Rotating Terrestrial Planets Orbiting M Dwarfs: Conditions for Atmospheric Collapse and the Implications for Habitability☆ , 1997 .

[38]  G. Chabrier,et al.  FALLING TRANSITING EXTRASOLAR GIANT PLANETS , 2009, 0901.2048.

[39]  S. Zucker,et al.  ON THE AGES OF PLANETARY SYSTEMS WITH MEAN-MOTION RESONANCES , 2011, 1109.6671.

[40]  Avi M. Mandell,et al.  Exotic Earths: Forming Habitable Worlds with Giant Planet Migration , 2006, Science.

[41]  C. Sotin,et al.  A new family of planets? Ocean-Planets , 2003 .

[42]  J. Fortney,et al.  The roles of tidal evolution and evaporative mass loss in the origin of CoRoT-7 b , 2010, 1005.2186.

[43]  Thomas Gold,et al.  Atmospheric tides and the resonant rotation of Venus , 1969 .

[44]  C. Sotin,et al.  Mass–radius curve for extrasolar Earth-like planets and ocean planets , 2007 .

[45]  N. Kaib,et al.  CoRoT-7b: SUPER-EARTH OR SUPER-Io? , 2009, 0912.1337.

[46]  J. Goguen,et al.  Io's heat flow from infrared radiometry: 1983–1993 , 1994 .

[47]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets: XVIII. An Earth-mass planet in the GJ 581 planetary system , 2009, 0906.2780.

[48]  Richard Greenberg,et al.  Tidal Evolution of Close-in Extrasolar Planets , 2008 .

[49]  Peter Hauschildt,et al.  Evolutionary models for solar metallicity low - mass stars: Mass - magnitude relationships and color - magnitude diagrams , 1998 .

[50]  R. Tyler Strong ocean tidal flow and heating on moons of the outer planets , 2008, Nature.

[51]  D. Stevenson Planetary Magnetic Fields: Achievements and Prospects , 2010 .

[52]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[53]  W. Bloh,et al.  The habitability of super-Earths , 2008 .

[54]  E. Quataert,et al.  NONLINEAR TIDES IN CLOSE BINARY SYSTEMS , 2011, 1107.0946.

[55]  T. Spohn,et al.  Thermal-orbital histories of viscoelastic models of Io (J1) , 1990 .

[56]  Charley Noecker,et al.  Worlds beyond: A strategy for the detection and characterization of exoplanets. Executive summary of a report of the ExoPlanet Task Force Astronomy and Astrophysics Advisory Committee Washington, DC June 23, 2008. , 2008, Astrobiology.

[57]  Seattle,et al.  Tidal obliquity evolution of potentially habitable planets , 2011, 1101.2156.

[58]  J. Kasting,et al.  M stars as targets for terrestrial exoplanet searches and biosignature detection. , 2007, Astrobiology.

[59]  D. Blaney,et al.  Volcanic Eruptions on Io: Heat Flow, Resurfacing, and Lava Composition , 1995 .

[60]  S. Aarseth,et al.  A numerical simulation of the formation of the terrestrial planets , 1986 .

[61]  J. Williams,et al.  Lunar Laser Ranging: A Continuing Legacy of the Apollo Program , 1994, Science.

[62]  Jill Trewhella,et al.  Radius Of Gyration , 2002 .

[63]  Roger V. Yelle,et al.  Aeronomy of extra-solar giant planets at small orbital distances , 2003 .

[64]  H. Monteiro The Habitable Zones of White Dwarfs , 2010 .

[65]  S. Seager,et al.  TRANSIT TIMING VARIATION ANALYSIS OF OGLE-TR-132b WITH SEVEN NEW TRANSITS , 2010, 1012.3365.

[66]  V. Dehant,et al.  First numerical ephemerides of the Martian moons , 2007 .

[67]  E. Chassefière,et al.  Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: The case of Venus , 1996 .

[68]  P. Olson,et al.  Optimal dynamos in the cores of terrestrial exoplanets: Magnetic field generation and detectability , 2011 .

[69]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[70]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XVII. Super-Earth and Neptune-mass planets in multiple planet systems HD 47 186 and HD 181 433 , 2008, 0812.1608.

[71]  G. Rossman,et al.  Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals , 1992, Science.

[72]  Diana Valencia,et al.  Detailed Models of Super-Earths: How Well Can We Infer Bulk Properties? , 2007, 0704.3454.

[73]  S. Majewski,et al.  The Carnegie Astrometric Planet Search Program , 2009, 0909.2008.

[74]  A. McEwen,et al.  Io's thermal emission from the Galileo photopolarimeter-radiometer. , 2000, Science.

[75]  Raymond T. Pierrehumbert,et al.  Principles of Planetary Climate: Radiative transfer in temperature-stratified atmospheres , 2010 .

[76]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[77]  D. Pollard,et al.  Atmospheric circulations of terrestrial planets orbiting low-mass stars , 2011 .

[78]  J. Laskar,et al.  Different tidal torques on a planet with a dense atmosphere and consequences to the spin dynamics , 2003 .

[79]  K. Khaliullin,et al.  Orbital circularization of close binary stars on the pre-main sequence , 2011 .

[80]  Austin,et al.  A Decreased Probability of Habitable Planet Formation around Low-Mass Stars , 2007, 0707.1711.

[81]  D. Turcotte Magellan and comparative planetology , 1996 .

[82]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[83]  Benjamin Levrard,et al.  Is tidal heating sufficient to explain bloated exoplanets? Consistent calculations accounting for finite initial eccentricity , 2010, 1004.0463.

[84]  A. Watson,et al.  Temperatures in a runaway greenhouse on the evolving Venus: implications for water loss , 1984 .

[85]  Chris Garrett,et al.  Internal Tide Generation in the Deep Ocean , 2007 .

[86]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[87]  J. Zahn,et al.  Tidal evolution of close binary stars. II: Orbital circularization of late-type binaries , 1989 .

[88]  David Charbonneau,et al.  Design Considerations for a Ground-Based Transit Search for Habitable Planets Orbiting M Dwarfs , 2007, 0709.2879.

[89]  Drake Deming,et al.  A reappraisal of the habitability of planets around M dwarf stars. , 2006, Astrobiology.

[90]  R. Greenberg,et al.  Eruptions arising from tidally controlled periodic openings of rifts on Enceladus , 2007, Nature.

[91]  T. Matsui,et al.  Evolution of an Impact-Generated H2O–CO2 Atmosphere and Formation of a Hot Proto-Ocean on Earth , 1988 .

[92]  J. Pollack A nongrey calculation of the runaway greenhouse: Implications for Venus' past and present☆ , 1971 .

[93]  Michael C. Cushing,et al.  THE DISCOVERY OF Y DWARFS USING DATA FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE) , 2011, 1108.4678.

[94]  X. Delfosse,et al.  Habitable planets around the star Gliese 581 , 2007, 0710.5294.

[95]  George W. Wetherill,et al.  Accumulation of a swarm of small planetesimals , 1989 .

[96]  Floris van Liere Planet Formation , 2009 .

[97]  R. P. Butler,et al.  Detection of a Neptune-Mass Planet in the ρ1 Cancri System Using the Hobby-Eberly Telescope , 2004, astro-ph/0408585.

[98]  M. H. Hart,et al.  Habitable zones about main sequence stars , 1979 .

[99]  M. Ross,et al.  Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io , 1988 .

[100]  L. Polvani,et al.  EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS , 2011, 1103.3101.

[101]  Graeme Ackland,et al.  MASS–RADIUS RELATIONSHIPS FOR EXOPLANETS , 2010, 1001.4851.

[102]  J. Arlot,et al.  Strong tidal dissipation in Io and Jupiter from astrometric observations , 2009, Nature.

[103]  D. Pollard,et al.  Earth-like worlds on eccentric orbits: excursions beyond the habitable zone , 2002, International Journal of Astrobiology.

[104]  Jean-Baptiste Madeleine,et al.  GLIESE 581D IS THE FIRST DISCOVERED TERRESTRIAL-MASS EXOPLANET IN THE HABITABLE ZONE , 2011, 1105.1031.

[105]  H. Jeffreys Tidal Friction , 1973, Nature.

[106]  J. Escartín,et al.  Hydrothermally‐induced melt lens cooling and segmentation along the axis of fast‐ and intermediate‐spreading centers , 2011 .

[107]  P. Goldreich Final spin states of planets and satellites. , 1966 .

[108]  Norman H Sleep,et al.  Habitable zone limits for dry planets. , 2011, Astrobiology.

[109]  R. Greenberg,et al.  Tides and the evolution of planetary habitability. , 2008, Astrobiology.

[110]  J. Laskar,et al.  The HARPS search for southern extra-solar planets - XXXIV. A planetary system around the nearby M dwarf GJ 163, with a super-Earth possibly in the habitable zone , 2013, 1306.0904.

[111]  H. Lichtenegger,et al.  Geophysical and atmospheric evolution of habitable planets. , 2010, Astrobiology.

[112]  Manoj Joshi,et al.  Climate model studies of synchronously rotating planets. , 2003, Astrobiology.

[113]  Usa,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES: I. HIGH-ENERGY IRRADIANCES (1–1700 A) , 2004 .

[114]  B. Jackson,et al.  RECENT TRANSITS OF THE SUPER-EARTH EXOPLANET GJ 1214b , 2010, 1008.1748.

[115]  J. Baross,et al.  Thermophilic and hyperthermophilic microorganisms in 3–30°C hydrothermal fluids following a deep-sea volcanic eruption , 1998 .

[116]  Eric Agol,et al.  TRANSIT SURVEYS FOR EARTHS IN THE HABITABLE ZONES OF WHITE DWARFS , 2011, 1103.2791.

[117]  R. Tyler Tidal dynamical considerations constrain the state of an ocean on Enceladus , 2011 .

[118]  S. H. Dole Habitable Planets for Man , 1964 .

[119]  J. Kasting,et al.  Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. , 1988, Icarus.

[120]  E. Agol,et al.  APOSTLE OBSERVATIONS OF GJ 1214b: SYSTEM PARAMETERS AND EVIDENCE FOR STELLAR ACTIVITY , 2010, 1012.1180.

[121]  C. Sagan,et al.  Volcanic resurfacing rates and implications for volatiles on Io , 1979, Nature.

[122]  Austin,et al.  The M dwarf planet search programme at the ESO VLT + UVES. A search for terrestrial planets in the h , 2009, 0908.0944.

[123]  Amanda J. Bayless,et al.  2MASS J05162881+2607387: A New Low-mass Double-lined Eclipsing Binary , 2006 .

[124]  C. Bergh The D/H ratio and the evolution of water in the terrestrial planets , 1993, Origins of life and evolution of the biosphere.

[125]  R. Pierrehumbert A PALETTE OF CLIMATES FOR GLIESE 581g , 2010 .

[126]  P. Bodenheimer,et al.  Orbital migration of the planetary companion of 51 Pegasi to its present location , 1996, Nature.

[127]  Jacques Laskar,et al.  On the long term evolution of the spin of the Earth. , 1995 .

[128]  Eiichiro Kokubo,et al.  Oligarchic growth of protoplanets , 1996 .

[129]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[130]  S. Hawley,et al.  The Great Flare of 1985 April 12 on AD Leonis , 1991 .

[131]  T. Guillot,et al.  Composition and fate of short-period super-Earths: The case of CoRoT-7b , 2009, 0907.3067.

[132]  George Howard Darwin,et al.  I. On the secular changes in the elements of the orbit of a satellite revolving about a tidally distorted planet , 1880, Proceedings of the Royal Society of London.

[133]  Joshua N. Winn,et al.  THE TRANSIT LIGHT CURVE PROJECT. XIII. SIXTEEN TRANSITS OF THE SUPER-EARTH GJ 1214b , 2010, 1012.0376.

[134]  et al,et al.  The CoRoT space mission : early results Special feature Transiting exoplanets from the CoRoT space mission VIII . CoRoT-7 b : the first super-Earth with measured radius , 2009 .

[135]  Daniel C. Fabrycky,et al.  RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e , 2010, 1005.4050.

[136]  M. Endl,et al.  Searching for Terrestrial Planets in the Habitable Zone of M dwarfs , 2004 .

[137]  S. Seager,et al.  Mass-Radius Relationships for Solid Exoplanets , 2007, 0707.2895.

[138]  Adam Burrows,et al.  COUPLED EVOLUTION WITH TIDES OF THE RADIUS AND ORBIT OF TRANSITING GIANT PLANETS: GENERAL RESULTS , 2009, 0902.3998.

[139]  A. Morbidelli,et al.  Terrestrial planet formation with strong dynamical friction , 2006 .

[140]  H. Lichtenegger,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[141]  “Hot Jupiters” , 2006 .

[142]  Imke de Pater,et al.  Tvashtar awakening detected in April 2006 with OSIRIS at the W.M. Keck Observatory , 2007 .

[143]  H. Alfvén,et al.  Evolution of the earth-moon system. , 1974 .

[144]  R. P. Butler,et al.  A PLANETARY SYSTEM AROUND THE NEARBY M DWARF GJ 667C WITH AT LEAST ONE SUPER-EARTH IN ITS HABITABLE ZONE , 2012, 1202.0446.

[145]  Tidal heating of terrestrial extrasolar planets and implications for their habitability , 2008, 0808.2770.

[146]  U. Christensen,et al.  Dipole moment scaling for convection-driven planetary dynamos , 2005 .

[147]  G. Tobie,et al.  TIDALLY INDUCED THERMAL RUNAWAYS ON EXTRASOLAR EARTHS: IMPACT ON HABITABILITY , 2010 .

[148]  M. Efroimsky,et al.  NO PSEUDOSYNCHRONOUS ROTATION FOR TERRESTRIAL PLANETS AND MOONS , 2012, 1209.1616.

[149]  A. Watson,et al.  The runaway greenhouse: implications for future climate change, geoengineering and planetary atmospheres , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[150]  A. Watson,et al.  Venus Was Wet: A Measurement of the Ratio of Deuterium to Hydrogen , 1982, Science.

[151]  Francesco Marzari,et al.  Gravitational scattering as a possible origin for giant planets at small stellar distances , 1996, Nature.

[152]  Sean N. Raymond,et al.  TIDAL LIMITS TO PLANETARY HABITABILITY , 2009, 0906.1785.

[153]  W. von Bloh,et al.  The habitability of super-Earths in Gliese 581 , 2007, 0705.3758.

[154]  A. Watson,et al.  The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus , 1981 .

[155]  J. Laskar,et al.  The four final rotation states of Venus , 2001, Nature.

[156]  Piet Hut,et al.  Tidal evolution in close binary systems , 1981 .

[157]  David P. O'Brien,et al.  THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS , 2010, 1004.0971.

[158]  P. Cassen,et al.  Melting of Io by Tidal Dissipation , 1979, Science.

[159]  M. Giampapa,et al.  Stellar coronae at the end of the main sequence: A Rosat survey of the late M dwarfs , 1993 .

[160]  J. Zahn Tidal friction in close binary stars , 1977 .

[161]  G. Marcy,et al.  High-eccentricity planets from the Anglo-Australian Planet Search , 2006, astro-ph/0603335.

[162]  É. Bolmont,et al.  Tidal evolution of planets around brown dwarfs , 2011, 1109.2906.

[163]  M. Komabayasi Discrete Equilibrium Temperatures of a Hypothetical Planet with the Atmosphere and the Hydrosphere of One Component-Two Phase System under Constant Solar Radiation , 1967 .

[164]  S. Weidenschilling,et al.  How fast do Galilean satellites spin , 1984 .

[165]  James G. Williams,et al.  Tidal torques: a critical review of some techniques , 2008, 0803.3299.

[166]  Andreas Seifahrt,et al.  THE CRIRES SEARCH FOR PLANETS AROUND THE LOWEST-MASS STARS. I. HIGH-PRECISION NEAR-INFRARED RADIAL VELOCITIES WITH AN AMMONIA GAS CELL , 2009, 0911.3148.

[167]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample , 2011, 1111.5019.

[168]  F. Tian THERMAL ESCAPE FROM SUPER EARTH ATMOSPHERES IN THE HABITABLE ZONES OF M STARS , 2009 .

[169]  Alfred S. McEwen,et al.  The lithosphere and surface of Io , 2004 .

[170]  Planets Formed in Habitable Zones of M Dwarf Stars Probably Are Deficient in Volatiles , 2007, astro-ph/0703576.

[171]  A. Ingersoll The Runaway Greenhouse: A History of Water on Venus , 1969 .

[172]  D. Lin,et al.  Calculating the Tidal, Spin, and Dynamical Evolution of Extrasolar Planetary Systems , 2002 .

[173]  R. Paul Butler,et al.  THE LICK–CARNEGIE EXOPLANET SURVEY: A 3.1 M⊕ PLANET IN THE HABITABLE ZONE OF THE NEARBY M3V STAR GLIESE 581 , 2010, 1009.5733.

[174]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[175]  David E. Smith,et al.  Improved estimate of tidal dissipation within Mars from MOLA observations of the shadow of Phobos , 2005 .

[176]  M. Ćuk Excitation of Lunar Eccentricity by Planetary Resonances , 2007, Science.

[177]  Martin Pätzold,et al.  Constraints on the tidal dissipation factor of a main sequence star: The case of OGLE-TR-56b , 2007 .

[178]  OBSERVATIONAL EVIDENCE FOR TIDAL DESTRUCTION OF EXOPLANETS , 2009, 0904.1170.

[179]  D. Sasselov,et al.  TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS , 2009, 0912.1907.

[180]  V. Lainey,et al.  Physics of Bodily Tides in Terrestrial Planets and the Appropriate Scales of Dynamical Evolution , 2007, 0709.1995.

[181]  Suzanne L. Hawley,et al.  New light on dark stars : red dwarfs, low-mass stars, brown dwarfs , 2000 .

[182]  J. Wisdom Tidal dissipation at arbitrary eccentricity and obliquity , 2008 .

[183]  J. Valenti,et al.  Transiting Exoplanets with JWST , 2008, 0808.1913.

[184]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[185]  J. Bochanski,et al.  CONSTRAINING THE AGE–ACTIVITY RELATION FOR COOL STARS: THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 5 LOW-MASS STAR SPECTROSCOPIC SAMPLE , 2007, 0712.1590.

[186]  O. Tamuz,et al.  The CORALIE survey for southern extra-solar planets - XV. Discovery of two eccentric planets orbiting HD 4113 and HD 156846 , 2007, 0710.5028.

[187]  Eduardo L. Martin,et al.  Detecting planets around very cool dwarfs at near infrared wavelengths with the radial velocity technique , 2011, 1105.2287.