Thermal Conductivity of Polyisoprene and Polybutadiene from Molecular Dynamics Simulations and Transient Measurements

The thermal conductivities of untreated polyisoprene and polybutadiene were calculated by molecular dynamics (MD) simulations using a Green-Kubo approach between −10 °C and 50 °C at atmospheric pressure. For comparison, the thermal conductivities of untreated polyisoprene with a molecular weight of 54,000 g/mol and untreated polybutadiene with a molecular weight of 45,000 g/mol were measured by the transient hot wire method in similar conditions. The simulation results of both polymers are in good agreement with the experimental data. We observed that the MD simulations slightly overestimate the thermal conductivity due to the chosen force field description. Details are discussed in the paper.

[1]  T. Ohara,et al.  Application of atomic stress to compute heat flux via molecular dynamics for systems with many-body interactions. , 2019, Physical review. E.

[2]  G. Naldi,et al.  A convergent adaptive wavelet-Rothe method for elastoplastic hardening , 2004 .

[3]  Elena Algaer Thermal Conductivity of Polymer Materials - Reverse Nonequilibrium Molecular Dynamics Simulations , 2010 .

[4]  D. R. Anderson Thermal Conductivity of Polymers , 1966 .

[5]  O. Andersson,et al.  Effects of cross-links, pressure and temperature on the thermal properties and glass transition behaviour of polybutadiene. , 2011, Physical chemistry chemical physics : PCCP.

[6]  O. Andersson,et al.  Crosslinking, thermal properties and relaxation behaviour of polyisoprene under high-pressure , 2008 .

[7]  F. Müller-Plathe,et al.  Anisotropy of the thermal conductivity in a crystalline polymer: reverse nonequilibrium molecular dynamics simulation of the delta phase of syndiotactic polystyrene. , 2009, The Journal of chemical physics.

[8]  Nuo Yang,et al.  High Thermal Conductivity of Bulk Epoxy Resin by Bottom-Up Parallel-Linking and Strain: A Molecular Dynamics Study , 2018, The Journal of Physical Chemistry C.

[9]  P. F. Onyon Polymer Handbook , 1972, Nature.

[10]  P. M. Anbarasan,et al.  Vibrational Spectra and Assignments of cis- and Trans-1,4-Polybutadiene , 2002 .

[11]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[12]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[13]  Joan-Emma Shea,et al.  Moltemplate a Coarse-Grained Model Assembly Tool , 2013 .

[14]  A. Nagashima,et al.  Simultaneous measurement of the thermal conductivity and the thermal diffusivity of liquids by the transient hot‐wire method , 1981 .

[15]  L. Rosenhead Conduction of Heat in Solids , 1947, Nature.

[16]  N. Saxena,et al.  Mechanical and thermal characterization of cis-polyisoprene and trans-polyisoprene blends , 2011 .

[17]  A. Nagashima,et al.  ABSOLUTE MEASUREMENT OF THE THERMAL CONDUCTIVITY OF ELECTRICALLY CONDUCTING LIQUIDS BY THE TRANSIENT HOT-WIRE METHOD (THERMAL CONDUCTIVITY OF AN AQUEOUS NaCl SOLUTION AT HIGH PRESSURE). , 1981 .

[18]  T. Rabczuk,et al.  Thermal conductivity dependence on chain length in amorphous polymers , 2013 .

[19]  T. Schneider,et al.  Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions , 1978 .

[20]  S. Mohan,et al.  VIBRATIONAL SPECTRA OF CIS-1,4-POLYISOPRENE , 2004 .

[21]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[22]  Ronggui Yang,et al.  Tuning the thermal conductivity of polymers with mechanical strains , 2010 .

[23]  Takamichi Terao,et al.  Nonequilibrium molecular dynamics methods for computing the thermal conductivity: application to amorphous polymers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  D. Hansen,et al.  Thermal conductivity of high polymers , 1965 .

[25]  Takamichi Terao,et al.  Nonequilibrium molecular dynamics calculation of the thermal conductivity of amorphous polyamide-6,6. , 2007, The journal of physical chemistry. B.