First-level tabu search approach for solving the multiple-choice multidimensional knapsack problem

We apply tabu search to the multiple-choice multidimensional knapsack problem. An initial solution involves a simple greedy heuristic. A neighbourhood is generated and a move is selected based on the best feasible neighbouring solution. The search continues for a fixed number of iterations and tabu search structures are used to improve the search process. We study the problem structure of available, benchmark, test problem instances and develop a new, more diverse set of test problem instances whose results better generalise to practice than do results obtained using existing test problems. We report the results of testing our tabu search approach versus existing solution approaches as applied to the available and our new test problem instances. The computational results show that our proposed approach performs comparably or better than the legacy heuristic approaches and clearly demonstrates that test problems affects how well results generalise to practice.

[1]  Laurent Péridy,et al.  Cut generation for an employee timetabling problem , 2009, Eur. J. Oper. Res..

[2]  John M. Wilson,et al.  Heuristics for determining the number of warehouses for storing non-compatible products , 2005, Int. Trans. Oper. Res..

[3]  Y. Cho Developing New Multidimensional Knapsack Heuristics Based on Empirical Analysis of Legacy Heuristics , 2012 .

[4]  Y. Toyoda A Simplified Algorithm for Obtaining Approximate Solutions to Zero-One Programming Problems , 1975 .

[5]  Charles H. Reilly,et al.  The Effects of Coefficient Correlation Structure in Two-Dimensional Knapsack Problems on Solution Procedure Performance , 2000 .

[6]  Prabhakant Sinha,et al.  The Multiple-Choice Knapsack Problem , 1979, Oper. Res..

[7]  Saïd Hanafi,et al.  An efficient tabu search approach for the 0-1 multidimensional knapsack problem , 1998, Eur. J. Oper. Res..

[8]  Constantine N. Goulimis,et al.  ASP, The Art and Science of Practice: Appeal to NP-Completeness Considered Harmful: Does the Fact That a Problem Is NP-Complete Tell Us Anything? , 2007, Interfaces.

[9]  Yun-Chia Liang,et al.  Solving the multidimensional knapsack problems with generalized upper bound constraints by the adaptive memory projection method , 2012, Comput. Oper. Res..

[10]  Eric G. Manning,et al.  Heuristic Solutions for the Multiple-Choice Multi-dimension Knapsack Problem , 2001, International Conference on Computational Science.

[11]  Günther R. Raidl The multiple container packing problem: a genetic algorithm approach with weighted codings , 1999, SIAP.

[12]  Michel Gendreau,et al.  Metaheuristics in Combinatorial Optimization , 2022 .

[13]  Kin F. Li,et al.  Solving the Knapsack Problem for Adaptive Multimedia Systems , 2002, Stud. Inform. Univ..

[14]  Lei Chen,et al.  Building an Adaptive Multimedia System using the Utility Model , 1999, IPPS/SPDP Workshops.

[15]  Nikitas J. Dimopoulos,et al.  A new heuristic for solving the multichoice multidimensional knapsack problem , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[16]  Mhand Hifi,et al.  A column generation method for the multiple-choice multi-dimensional knapsack problem , 2010, Comput. Optim. Appl..

[17]  V. Lia,et al.  Towards the real time solution of strike force asset allocation problems , 2003 .

[18]  David Pisinger,et al.  Budgeting with bounded multiple-choice constraints , 2001, Eur. J. Oper. Res..

[19]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[20]  M. Moser,et al.  An Algorithm for the Multidimensional Multiple-Choice Knapsack Problem , 1997 .

[21]  Raymond R. Hill,et al.  Generation Methods for Multidimensional Knapsack Problems and their Implications , 2006 .

[22]  Fred W. Glover,et al.  Solving zero-one mixed integer programming problems using tabu search , 1998, European Journal of Operational Research.

[23]  Raymond R. Hill,et al.  New greedy heuristics for the Multiple-choice Multi-dimensional Knapsack Problem , 2007 .

[24]  Kurt Jörnsten,et al.  Tabu Search for General Zero-One Integer Programs Using the Pivot and Complement Heuristic , 1994, INFORMS J. Comput..

[25]  Abdelkader Sbihi,et al.  A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem , 2007, J. Comb. Optim..

[26]  R. Hill,et al.  Improving genetic algorithm convergence using problem structure and domain knowledge in multidimensional knapsack problems , 2005 .

[27]  Nicholas J. Zeisler,et al.  A Greedy Multiple-Knapsack Heuristic for Solving Air Mobility Command's Intratheater Airlift Problem , 2012 .

[28]  Christopher A. Chocolaad Solving Geometric Knapsack Problems using Tabu Search Heuristics. , 1998 .

[29]  Mhand Hifi,et al.  Heuristic algorithms for the multiple-choice multidimensional knapsack problem , 2004, J. Oper. Res. Soc..

[30]  Mhand Hifi,et al.  A Reactive Local Search-Based Algorithm for the Multiple-Choice Multi-Dimensional Knapsack Problem , 2006, Comput. Optim. Appl..

[31]  Gwendal Simon,et al.  Hard multidimensional multiple choice knapsack problems, an empirical study , 2010, Comput. Oper. Res..

[32]  Charles H. Reilly,et al.  Synthetic Optimization Problem Generation: Show Us the Correlations! , 2009, INFORMS J. Comput..

[33]  Eileen A. Bjorkman Test and Evaluation Resource Allocation Using Uncertainty Reduction as a Measure of Test Value , 2012 .

[34]  Guy L. Curry,et al.  Solving multidimensional knapsack problems with generalized upper bound constraints using critical event tabu search , 2005, Comput. Oper. Res..

[35]  A. Fréville,et al.  Heuristics and reduction methods for multiple constraints 0-1 linear programming problems , 1986 .

[36]  Vincent C. Li Tight oscillations tabu search for multidimensional knapsack problems with generalized upper bound constraints , 2005, Comput. Oper. Res..

[37]  Mhand Hifi,et al.  Hybrid algorithms for the Multiple-choice Multi-dimensional Knapsack Problem , 2009 .

[38]  Y. Feng,et al.  Resource Allocation in Ka-band Satellite Systems , 2001 .

[39]  Jonathan M. Romaine Solving the Multidimensional Multiple Knapsack Problem with Packing Constraints Using Tabu Search , 2012 .

[40]  Mohammad Sohel Rahman,et al.  Solving the Multidimensional Multiple-choice Knapsack Problem by constructing convex hulls , 2006, Comput. Oper. Res..

[41]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.