Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate

We present the simulation, fabrication and optical characterization of plasmonic gold bowtie nanoantennas on a semiconducting GaAs substrate as geometrical parameters such as size, feed gap, height and polarization of the incident light are varied. The surface plasmon resonance was probed using white light reflectivity on an array of nominally identical, 35nm thick Au antennas. To elucidate the influence of the semiconducting, high refractive index substrate, all experiments were compared using nominally identical structures on glass. Besides a linear shift of the surface plasmon resonance from 1.08eV to 1.58eV when decreasing the triangle size from 170nm to 100nm on GaAs, we observed a global redshift by 0.25 +- 0.05eV with respect to nominally identical structures on glass. By performing polarization resolved measurements and comparing results with finite difference time domain simulations, we determined the near field coupling between the two triangles composing the bowtie antenna to be 8x stronger when the antenna is on a glass substrate compared to when it is on a GaAs substrate. The results obtained are of strong relevance for the integration of lithographically defined plasmonic nanoantennas on semiconducting substrates and, therefore, for the development of novel optically active plasmonic-semiconducting nanostructures.

[1]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[2]  S. Maier,et al.  Scattering efficiency and near field enhancement of active semiconductor plasmonic antennas at terahertz frequencies. , 2010, Optics express.

[3]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[4]  Ulrich Hohenester,et al.  Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. , 2012, Nano letters.

[5]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[6]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[7]  K. Jacobi,et al.  Atomically resolved structure of InAs quantum dots , 2001 .

[8]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[9]  J. Finley,et al.  Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters , 2013, Nanotechnology.

[10]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[11]  Daniel Derkacs,et al.  Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles , 2007 .

[12]  Tim H. Taminiau,et al.  Optical antennas direct single-molecule emission , 2008 .

[13]  S. Rolston,et al.  COMPRESSION AND PARAMETRIC DRIVING OF ATOMS IN OPTICAL LATTICES , 1997 .

[14]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[15]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[16]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[17]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[18]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[19]  Harald Giessen,et al.  Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna. , 2010, Nano letters.

[20]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[21]  Bert Hecht,et al.  Electrically connected resonant optical antennas. , 2012, Nano letters.

[22]  L. R. Wilson,et al.  Metal nanoantenna plasmon resonance lineshape modification by semiconductor surface native oxide , 2012 .

[23]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[24]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[25]  V. Sandoghdar,et al.  Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission. , 2012, Physical review letters.

[26]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[27]  O. Martin,et al.  Engineering the optical response of plasmonic nanoantennas. , 2008, Optics express.

[28]  Hervé Rigneault,et al.  A plasmonic 'antenna-in-box' platform for enhanced single-molecule analysis at micromolar concentrations. , 2013, Nature nanotechnology.

[29]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[30]  L. Manna,et al.  Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control , 2006, Nature nanotechnology.

[31]  Sergey I. Bozhevolnyi,et al.  Nanofocusing of electromagnetic radiation , 2013, Nature Photonics.

[32]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[33]  L. Novotný,et al.  Antennas for light , 2011 .

[34]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[35]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[36]  Gordon S. Kino,et al.  Gap-Dependent Optical Coupling of Single “Bowtie” Nanoantennas Resonant in the Visible , 2004 .

[37]  R. Bratschitsch,et al.  Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. , 2009, Physical review letters.

[38]  Jean-Claude Weeber,et al.  Plasmon polaritons of metallic nanowires for controlling submicron propagation of light , 1999 .

[39]  Giorgio Volpe,et al.  Multipolar radiation of quantum emitters with nanowire optical antennas , 2013, Nature Communications.

[40]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[41]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[42]  H. Kurz,et al.  Propagation of surface plasmon polaritons on semiconductor gratings. , 2004, Physical review letters.

[43]  J. Sambles,et al.  Experimental Verification of Designer Surface Plasmons , 2005, Science.

[44]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.