Marked Systems and Circular Splicing

Splicing systems are generative devices of formal languages, introduced by Head in 1987 to model biological phenomena on linear and circular DNA molecules. In this paper we introduce a special class of finite circular splicing systems named marked systems. We prove that a marked system S generates a regular circular language if and only if S satisfies a special (decidable) property. As a consequence, we show that we can decide whether a regular circular language is generated by a marked system and we characterize the structure of these regular circular languages.

[1]  D. Pixton Linear and circular splicing systems , 1995, Proceedings First International Symposium on Intelligence in Neural and Biological Systems. INBS'95.

[2]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[3]  J. Berstel,et al.  Theory of codes , 1985 .

[4]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[5]  Dennis Pixton,et al.  Regularity of Splicing Languages , 1996, Discret. Appl. Math..

[6]  Gheorghe Paun,et al.  DNA Computing , 1998, Texts in Theoretical Computer Science.

[7]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[8]  Gheorghe Paun,et al.  DNA Computing: New Computing Paradigms , 1998 .

[9]  Paola Bonizzoni,et al.  Circular splicing and regularity , 2004, RAIRO Theor. Informatics Appl..

[10]  Dennis Pixton,et al.  Splicing in abstract families of languages , 2000, Theor. Comput. Sci..

[11]  Paola Bonizzoni,et al.  Decision Problems for Linear and Circular Splicing Systems , 2002, Developments in Language Theory.

[12]  K. G. Subramanian,et al.  On Some Classes of Splicing Languages , 2004, Aspects of Molecular Computing.

[13]  榊原 康文,et al.  G. Paun, G. Rozenberg and A. Salomaa : "DNA Computing-New Computing Paradigms", Springer-Verlag (1998) , 2000 .

[14]  Paola Bonizzoni,et al.  The structure of reflexive regular splicing languages via Schützenberger constants , 2005, Theor. Comput. Sci..

[15]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[16]  Grzegorz Rozenberg,et al.  Aspects of Molecular Computing , 2004, Lecture Notes in Computer Science.

[17]  Rani Siromoney,et al.  Circular DNA and Splicing Systems , 1992, ICPIA.

[18]  Paola Bonizzoni,et al.  On the power of circular splicing , 2005, Discret. Appl. Math..

[19]  Katsushi Inoue,et al.  Parallel Image Analysis , 1992, Lecture Notes in Computer Science.

[20]  C.M. Reis,et al.  Reflective Star Languages and Codes , 1979, Inf. Control..

[21]  Paola Bonizzoni,et al.  DNA and Circular Splicing , 2000, DNA Computing.

[22]  Gheorghe Paun,et al.  On the Splicing Operation , 1996, Discret. Appl. Math..

[23]  Gheorghe Paun,et al.  Language Theory and Molecular Genetics: Generative Mechanisms Suggested by DNA Recombination , 1997, Handbook of Formal Languages.

[24]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[25]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[26]  Tom Head,et al.  Formal language theory and DNA: An analysis of the generative capacity of specific recombinant behaviors , 1987 .

[27]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[28]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[29]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[30]  David I. Lewin,et al.  DNA computing , 2002, Comput. Sci. Eng..