Lossy Compression in Optimal Control of Cardiac Defibrillation

This paper presents efficient computational techniques for solving an optimization problem in cardiac defibrillation governed by the monodomain equations. Time-dependent electrical currents injected at different spatial positions act as the control. Inexact Newton-CG methods are used, with reduced gradient computation by adjoint solves. In order to reduce the computational complexity, adaptive mesh refinement for state and adjoint equations is performed. To reduce the high storage and bandwidth demand imposed by adjoint gradient and Hessian-vector evaluations, a lossy compression technique for storing trajectory data is applied. An adaptive choice of quantization tolerance based on error estimates is developed in order to ensure convergence. The efficiency of the proposed approach is demonstrated on numerical examples.

[1]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[2]  Mark Potse,et al.  A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart , 2006, IEEE Transactions on Biomedical Engineering.

[3]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[4]  Sebastian Götschel,et al.  State Trajectory Compression for Optimal Control with Parabolic PDEs , 2012, SIAM J. Sci. Comput..

[5]  Peter Bastian,et al.  Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE) , 2010, Kybernetika.

[6]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[7]  Karl Kunisch,et al.  Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology , 2011, Comput. Optim. Appl..

[8]  Peter Deuflhard,et al.  Adaptive Numerical Solution of PDEs , 2012 .

[9]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[10]  Youssef Belhamadia,et al.  Towards accurate numerical method for monodomain models using a realistic heart geometry. , 2009, Mathematical biosciences.

[11]  K. Kunisch,et al.  Instantaneous control of backward-facing step flows , 1999 .

[12]  Kazufumi Ito,et al.  Asymptotic Properties of Receding Horizon Optimal Control Problems , 2002, SIAM J. Control. Optim..

[13]  A. McCulloch,et al.  A collocation-Galerkin finite element model of cardiac action potential propagation , 1994, IEEE Transactions on Biomedical Engineering.

[14]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[15]  M. Heinkenschloss,et al.  A spatial domain decomposition method for parabolic optimal control problems , 2007 .

[16]  K. Kunisch,et al.  Optimal control of the bidomain system (I): The monodomain approximation with the Rogers–McCulloch model , 2012 .

[17]  P. Deuflhard,et al.  Extrapolation Integrators for Quasilinear Implicit ODEs , 1987 .

[18]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[19]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[20]  Sebastian Götschel,et al.  Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox , 2012 .

[21]  Karl Kunisch,et al.  A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology , 2011, Comput. Vis. Sci..

[22]  Aslak Tveito,et al.  Optimal monodomain approximations of the bidomain equations , 2007, Appl. Math. Comput..

[23]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[24]  Frank Allgöwer,et al.  A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability , 1997, 1997 European Control Conference (ECC).

[25]  Y. Bourgault,et al.  Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology , 2009 .

[26]  C. Henriquez Simulating the electrical behavior of cardiac tissue using the bidomain model. , 1993, Critical reviews in biomedical engineering.

[27]  K. Kunisch,et al.  Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology , 2011 .

[28]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[29]  Christoph von Tycowicz,et al.  Context‐Based Coding of Adaptive Multiresolution Meshes , 2011, Comput. Graph. Forum.

[30]  Sebastian Götschel,et al.  Lossy compression for PDE-constrained optimization: adaptive error control , 2015, Comput. Optim. Appl..

[31]  Jens Lang,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology , 2022 .

[32]  R. Plonsey Bioelectric sources arising in excitable fibers (Alza lecture) , 2006, Annals of Biomedical Engineering.