A note on Grothendieck's standard conjectures of type C and D

Grothendieck conjectured in the sixties that the even Kunneth projector (with respect to a Weil cohomology theory) is algebraic and that the homological equivalence relation on algebraic cycles coincides with the numerical equivalence relation. In this note we extend these celebrated conjectures from smooth projective schemes to the broad setting of smooth proper dg categories. As an application, we prove that Grothendieck's original conjectures are invariant under homological projective duality. This leads to a proof of Grothendieck's conjectures in the case of intersections of quadrics, linear sections of determinantal varieties, and intersections of bilinear divisors. Along the way, we prove also the case of quadric fibrations.

[1]  J. Rennemo The homological projective dual of Sym^2 P(V) , 2015 .

[2]  M. Bolognesi,et al.  Homological projective duality for determinantal varieties , 2014, 1410.7803.

[3]  A. Kuznetsov Semiorthogonal decompositions in algebraic geometry , 2014, 1404.3143.

[4]  M. Marcolli,et al.  Some remarks concerning Voevodsky's nilpotence conjecture , 2014, 1403.0876.

[5]  Gonçalo Tabuada,et al.  Noncommutative motives of Azumaya algebras , 2013, Journal of the Institute of Mathematics of Jussieu.

[6]  Charles Vial Algebraic cycles and fibrations , 2012, Documenta Mathematica.

[7]  M. Marcolli,et al.  Noncommutative numerical motives, Tannakian structures, and motivic Galois groups , 2011, 1110.2438.

[8]  D. Orlov,et al.  Uniqueness of enhancement for triangulated categories , 2009, 0908.4187.

[9]  M. Narasimhan The Standard Conjectures on Algebraic Cycles , 2009 .

[10]  M. Kontsevich Notes on Motives in Finite Characteristic , 2007, math/0702206.

[11]  A. Kuznetsov Homological projective duality for Grassmannians of lines , 2006, math/0610957.

[12]  Bernhard Keller,et al.  On differential graded categories , 2006, math/0601185.

[13]  A. Kuznetsov Derived categories of quadric fibrations and intersections of quadrics , 2005, math/0510670.

[14]  A. Kuznetsov Homological projective duality , 2005, math/0507292.

[15]  Y. André Une introduction aux motifs (motifs purs, motifs mixtes, périodes) , 2004 .

[16]  O. Smirnov Graded associative algebras and Grothendieck standard conjectures , 1997 .

[17]  D. Lieberman NUMERICAL AND HOMOLOGICAL EQUIVALENCE OF ALGEBRAIC CYCLES ON HODGE MANIFOLDS. , 1968 .

[18]  Séminaire Bourbaki,et al.  Dix exposés sur la cohomologie des schémas , 1968 .

[19]  S. Kleiman,et al.  Algebraic cycles and the Weil conjectures , 1968 .