A note on Grothendieck's standard conjectures of type C and D
暂无分享,去创建一个
[1] J. Rennemo. The homological projective dual of Sym^2 P(V) , 2015 .
[2] M. Bolognesi,et al. Homological projective duality for determinantal varieties , 2014, 1410.7803.
[3] A. Kuznetsov. Semiorthogonal decompositions in algebraic geometry , 2014, 1404.3143.
[4] M. Marcolli,et al. Some remarks concerning Voevodsky's nilpotence conjecture , 2014, 1403.0876.
[5] Gonçalo Tabuada,et al. Noncommutative motives of Azumaya algebras , 2013, Journal of the Institute of Mathematics of Jussieu.
[6] Charles Vial. Algebraic cycles and fibrations , 2012, Documenta Mathematica.
[7] M. Marcolli,et al. Noncommutative numerical motives, Tannakian structures, and motivic Galois groups , 2011, 1110.2438.
[8] D. Orlov,et al. Uniqueness of enhancement for triangulated categories , 2009, 0908.4187.
[9] M. Narasimhan. The Standard Conjectures on Algebraic Cycles , 2009 .
[10] M. Kontsevich. Notes on Motives in Finite Characteristic , 2007, math/0702206.
[11] A. Kuznetsov. Homological projective duality for Grassmannians of lines , 2006, math/0610957.
[12] Bernhard Keller,et al. On differential graded categories , 2006, math/0601185.
[13] A. Kuznetsov. Derived categories of quadric fibrations and intersections of quadrics , 2005, math/0510670.
[14] A. Kuznetsov. Homological projective duality , 2005, math/0507292.
[15] Y. André. Une introduction aux motifs (motifs purs, motifs mixtes, périodes) , 2004 .
[16] O. Smirnov. Graded associative algebras and Grothendieck standard conjectures , 1997 .
[17] D. Lieberman. NUMERICAL AND HOMOLOGICAL EQUIVALENCE OF ALGEBRAIC CYCLES ON HODGE MANIFOLDS. , 1968 .
[18] Séminaire Bourbaki,et al. Dix exposés sur la cohomologie des schémas , 1968 .
[19] S. Kleiman,et al. Algebraic cycles and the Weil conjectures , 1968 .