Robust adaptive quasi-Newton algorithms for eigensubspace estimation
暂无分享,去创建一个
[1] S.Y. Kung,et al. Adaptive Principal component EXtraction (APEX) and applications , 1994, IEEE Trans. Signal Process..
[2] Peter Strobach. Square-root QR inverse iteration for tracking the minor subspace , 2000, IEEE Trans. Signal Process..
[3] Vwani P. Roychowdhury,et al. An adaptive quasi-Newton algorithm for eigensubspace estimation , 2000, IEEE Trans. Signal Process..
[4] Soura Dasgupta,et al. Adaptive estimation of eigensubspace , 1995, IEEE Trans. Signal Process..
[5] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[6] K. Abed-Meraim,et al. Natural power method for fast subspace tracking , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).
[7] Mahmood R. Azimi-Sadjadi,et al. Principal component extraction using recursive least squares learning , 1995, IEEE Trans. Neural Networks.
[8] Yingbo Hua,et al. Fast subspace tracking and neural network learning by a novel information criterion , 1998, IEEE Trans. Signal Process..
[9] Bin Yang,et al. Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] Ronald D. DeGroat,et al. Noniterative subspace tracking , 1992, IEEE Trans. Signal Process..
[12] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[13] E. M. Dowling,et al. Conjugate gradient eigenstructure tracking for adaptive spectral estimation , 1995, IEEE Trans. Signal Process..
[14] Qingfu Zhang,et al. Energy function for the one-unit Oja algorithm , 1995, IEEE Trans. Neural Networks.
[15] G. Golub,et al. Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.
[16] S. Haykin,et al. Adaptive Filter Theory , 1986 .
[17] S. Kung,et al. VLSI Array processors , 1985, IEEE ASSP Magazine.
[18] V. Nollau. Kushner, H. J./Clark, D. S., Stochastic Approximation Methods for Constrained and Unconstrained Systems. (Applied Mathematical Sciences 26). Berlin‐Heidelberg‐New York, Springer‐Verlag 1978. X, 261 S., 4 Abb., DM 26,40. US $ 13.20 , 1980 .
[19] Bernie Mulgrew,et al. IEEE Workshop on Neural Networks for Signal Processing , 1995 .
[20] G. W. Stewart,et al. An updating algorithm for subspace tracking , 1992, IEEE Trans. Signal Process..
[21] Zheng Bao,et al. Robust recursive least squares learning algorithm for principal component analysis , 2000, IEEE Trans. Neural Networks Learn. Syst..
[22] Harold J. Kushner,et al. wchastic. approximation methods for constrained and unconstrained systems , 1978 .
[23] Erkki Oja,et al. Principal components, minor components, and linear neural networks , 1992, Neural Networks.